

CONNECTED VEHICLE PILOT

Deployment Program

RESOLVING TECHNICAL CHALLENGES

WHAT TO EXPECT IN THIS SESSION

- Technical Panel Discussion of the technical issues each site encountered and their solutions.
 - Facilitator: Jonathan Walker, Program Manager of R&D, ITS JPO
 - Panelists:
 - Robert Rausch, Vice President, TransCore
 - Steve Novosad, Associate Vice President, HNTB
 - Tony English, Owner, Neaera Consulting Group

SESSION AGENDA

■ 3:30 – 3:40 PM Overview of Program Lessons Learned

Jonathan Walker, Program Manager of R&D, ITS JPO

■ 3:40 – 4:00 PM NYCDOT Pilot Technical Challenges

Robert Rausch

■ 4:00 – 4:20 PM Tampa (THEA) Pilot Technical Challenges

Steve Novosad

■ 4:20 – 4:40 PM Wyoming DOT Pilot Technical Challenges

Tony English

■ 4:40 – 4:45 PM Q&A

WE DOCUMENT DEPLOYMENT EXPERIENCES

https://www.its.dot.gov/pilots/index.htm

Connected Vehicles

Connected Vehicle Pilot Deployment Program

CV Pilots News & Events

- Tampa (THEA) Connected Vehicle Pilot Investigated Roadside Unit (RSU)
 Transient Surge Immunity 5/14/19
- CV Pilots presentation sessions at the ITS America Annual Meeting in Washington DC 5/6/19
- Connected Vehicle Pilots Phase 2 Interoperability Test Report is now available 4/26/19
- Connected Vehicle Pilot Deployment Program, Driving Towards Deployment: Lessons Learned from the Design/Build/Test Phase is now available 4/26/19
- New York City CV Pilot to Use High-Accuracy Positioning Techniques 3/25/19
- Wyoming DOT (WYDOT) Connected Vehicle Pilot Determines Appropriate Tractor-Trailer Antenna Placement and Equipment Configuration 3/20/19

New York City DOT Pilot

Tampa-Hillsborough
Expressway Authority Pilot

Wyoming DOT Pilot

Success Stories

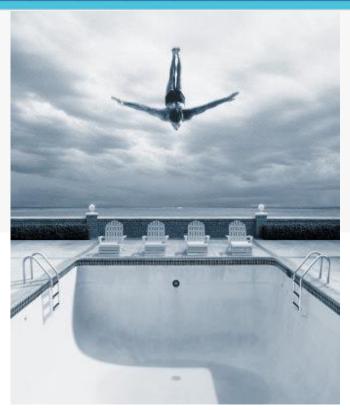
- Keeping Stakeholders and the Public Informed
- Bringing Local Agencies to Work Together
- Promoting Interoperability
- Providing Open Source CV Applications and Sharing Data
- Accelerating Collaboration and CV Deployment

Lessons Learned

- Driving Towards Deployment: Lessons Learned from the Design/Build/Test Phase
- Connected Vehicle Pilot Deployment Program
 Phase 1 Lessons Learned
- Interoperability Testing amongst the three Connected Vehicle Pilots
- NYC Pilot's demonstration at the ITS-NY Annual Meeting and Technology Exhibition
- Integrating and Testing Large Disparate Systems

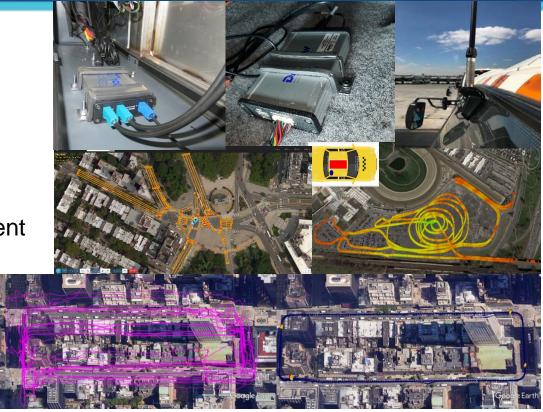
NYCDOT Pilot Deployment

Robert Rausch

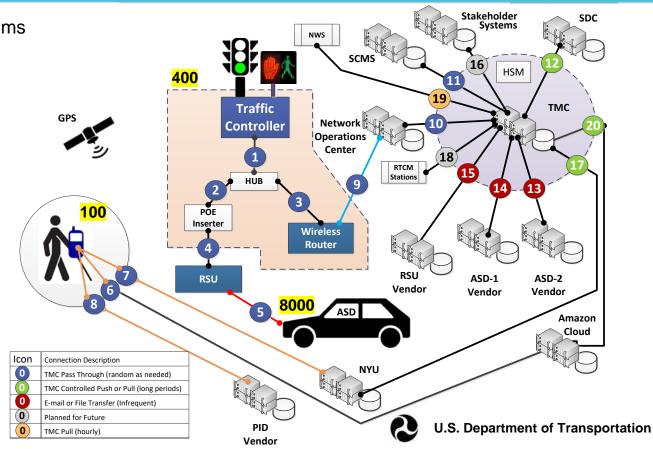

BEFORE YOU START A CONNECTED VEHICLE PROJECT

Lessons and Challenges from the –

The New York City Connected Vehicle Pilot Deployment Project

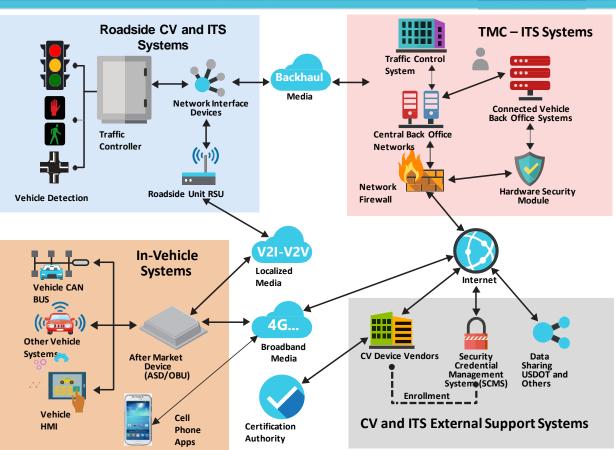


TOPICS


- System Complexity
- Infrastructure Challenges
 - Vehicle Interfaces
 - Communications Security
- Data Challenges
 - RSU installation & management
 - OTA management
 - Data Collection
- Standards
- Testing

CONNECTION DIAGRAM FOR NYC CV PILOT SYSTEM

- Connections to external systems
- Firewalls
- Media Management
- Servers to manage
- ICD's to be developed
- SCMS access and profiles
- Development
 - PED Application
 - V2I Applications
 - O&M Applications
 - Asset Management
 - Installation Procedures



CONNECTED VEHICLE END-TO-END ECO SYSTEM

- Project Deployment required addressing all of these elements
 - Controller Firmware Updates
 - SPaT and Configuration
 - ITS Communications Security
 - DTLS and X.509 certificates
 - Pedestrian Detection
 - RSU Installation
 - Cross Intersection Connection
 - Precise Location X,Y,Z
 - MAP message generation
 - Data Collection for Travel Time
 - Backhaul IP addressing
 - Firewalls
 - Proxy servers
 - O&M support all elements

VEHICLE INTERFACE

- CAN BUS
 - Interference from other devices (e.g. GeoTab)
 - Active retrieval can create vehicle errors
 - Electrical interference issues
 - What data is available at OBD2 port
 - 10 Hz speed needed
- Solution was a passive coupler
 - Directly "on" CAN bus

Downside: cannot read VIN – only what happens to be active on the CAN bus!

- Power Consumption
 - Quiescent power needed for GPS history
 - 25 microamps
 - Power needed to avoid Linux file corruption
 - Power needed to complete transfers
 - Upload & Download
 - Battery Preservation
 - Solution:
 - Mandatory step-down watchdogs
 - Time-out for "completion"
 - Lesson Learned
 - ALWAYS DISCONNECT BATTERY BEFORE ANY INSTALLATION OR REPAIR

SECURITY CHALLENGES

- Communications Security
 - TMC to ATC: (DTLS, TLS, VPN ...)
 - ATC to RSU: DTLS SNMPv1
 - TMC to RSU: DTLS SNMPv3
 - Encryption requirements
 - OBS software completion
 - X.509 certificate management
 - Where are messages "signed" (1609.2)
 - RSU (SPaT), TMC (MAP. TIM)
 - HSM at TMC
- Network Security Interfaces
 - Amazon Cloud
 - SDC
 - SCMS
 - NYU
- Firewall Management
 - Rules & Proxy Servers
 - Configuration Management
 - Redundancy and reliability

- Security Profiles for DSRC messages
- Separate PSIDs
 - BSMMAPTIM
 - □ OTA Upload □ OTA Download
 - □ V2X Locate □ TIM
- Issues of Re-Enrollment
 - Bench and trusted environment
- Interoperability issues
 - Test Certs will not interoperate with Pilot Certs
 - Devices must be re-enrolled to change
 - Production Installation vs. prototype testing
- Proxy server needed for SCMS access
 - Inconsistent with OBS security provisions
- Certificate quantities and lifespan
 - □ 60/week 2 week life

RSU CHALLENGES

- "Ideal Location" vs. what is available!
 - Line of sight Avenues and Streets
- No Conduit to Traffic Controller
 - Implemented cross intersection wireless ethernet link
- Mast Arms already "crowded"
 - Developed alternative mounting to avoid damage
- Changes After Installation
 - Scaffolding compromised V2X Locate
- RSU functionality issues extensive testing (NY CVPD is different)
 - OTA upload (logs) OTA download (Firmware & Application Tuning)
- Time sync Traffic controller (AC Line) vs. RSU/ASD (GPS)
 - Future goal all GPS

OTA – APPLICATION UPDATES & DATA COLLECTION

- Data collection
 - Limit data to "events"
 - Travel Times only need 1 BSM
 - Per vehicle
 - Per Intersection
 - RF Monitoring only 2 BSMs/vehicle
- Bandwidth Limitation of Backhaul
 - RSU acts as store and forward
 - Multiple RSUs at some locations

- OTA updates to firmware & ASD configuration
 - Developed a network coding scheme
 - Broadcast for bulk of downloads
 - On demand for the "stragglers"
 - Maximize channel utilization
 - Target "groups" to manage options
- Extensive System Testing & complexity
 - ASD, RSU, Backhaul, Network, TMC
 - Large file sizes Up and Down Still Testing

Keep in mind the cost to physically access the vehicle - - prohibitive

STANDARDS ISSUES

- Security issues
 - Understanding and managing 1609.2
 - Number of certificates
 - What PSIDs are covered by each Cert.
 - Guide coming from USDOT!
 - Certificate Change criteria
- Security Library Performance Issues
 - Still testing

- 1202v3 did not exactly meet the need
 - Modified to transmit block object
 - Time-tick for RSU to track the LFC-GPS difference
- J2735 3 CVPD Sites collaborated
 - Consistent interpretation of the meaning
 - Consistent use of optional elements
 - Consistent use of security
 - Issues with MAP message interpretation

Understanding the Complexity of Testing!

ASD

- Functional V2V
- Functional V2I
- OTA Uploading
- OTA Downloading
- RF receiver and transmitter
- Validating Data Collected
- Operational Stability
- Security Support
- Power consumption
- Startup-shutdown power interruption
- + Routine Env., Shock, Vibration, ESD

System

- Security
- O&M support
- Configuration Support
- Data Collection, obfuscation, aggregation, and export
- MAP and TIM management

RSU

- Validating data collection
 - Travel time
 - RF levels
- Configuration of operation
- Functional SPaT, MAP, TIM
- Operational Stability Failsafe recovery
- Communications Stability to ATC & TMC & recovery
- Security Support
- RF receiver and transmitter
- OTA Uploading
- OTA Downloading
- Startup-shutdown power interruption
- SCMS gateway
- Startup-shutdown power interruption
- + Routine Env., Shock, Vibration, ESD
- Time management
- PID (pedestrian Device)
- Urban Canyon & Open Sky

NYCDOT TECHNICAL CHALLENGE PANEL DISCUSSION

- Facilitator: Jonathan Walker
- Panelists:
 - Robert Rausch
 - Steve Novosad
 - Tony English

- NYCDOT Pilot Technical Challenges
 - System Complexity
 - Infrastructure Challenges
 - Vehicle Interfaces and Communications Security
 - Data Challenges
 - RSU management, ASD management and Data Collection
 - Standards
 - Testing

Tampa (THEA) Pilot Deployment

Steve Novosad

PILOT DEPLOYMENT AREA

IF WE COULD DO IT OVER AGAIN, WE WOULD:

- Obtain a Better Understanding of "Available" Applications' Maturity
- Obtain a Better Understanding of "Available" RSU and OBU Hardware
- Obtain a Better Understanding of Vendors' Depth and Resources
- More Transparency in the Device Certification Process From Vendors
- Complete Integration Testing Before Private Vehicle Installs Begin
- Have Shifted the Focus Much Sooner to a Commercial Security Credential Management System
- Identify the Need to Use Traditional ITS Devices as Part of Solution Earlier
- Understanding of Vendor's Readiness for "True" deployment
- Require Test tools from each Vendor

TAMPA (THEA) PILOT TECHNICAL CHALLENGES

- Innovative ways to incentivize the public to participate
- Cross functional coordination is absolutely critical
- Importance of face to face progress meetings
- Deployment in an area undergoing significant redevelopment complicated Pilot to deal with confounding factors
- Establish Communication usage on your channels early
- Certification process outside of Pilot control
- Adequate incentives with community/media support engage the driver/consumer community
- Recognizing the need for a complete and experienced project team systems, infrastructure, vehicle systems, performance measurement, etc.

TAMPA (THEA) PILOT TECHNICAL CHALLENGES

■ OBUS - DON'T DO IT!!! Hire auto professionals to manage!

- Multiple Technical Scans using RFPs (with on the road testing)
- Early Sourcing of Suppliers to Create a Collaborative Environment
- Early real-life testing with infrastructure in place to verify end-to-end system/application performance
- Distributed Team Across the Country and in Europe, be careful can they support you from overseas
- New development efforts OTA and security need to be piloted, i.e. tested early in the program
- Vendor Testing Environments Sharing equipment was not enough

TAMPA (THEA) PILOT TECHNICAL CHALLENGES

Onsite Integration Testing

ONSITE Integration Testing

ONSITE INTEGRATION TESTING

THEA TECHNICAL CHALLENGE PANEL DISCUSSION

- Facilitator: Jonathan Walker
- Panelists:
 - Robert Rausch
 - Steve Novosad
 - Tony English

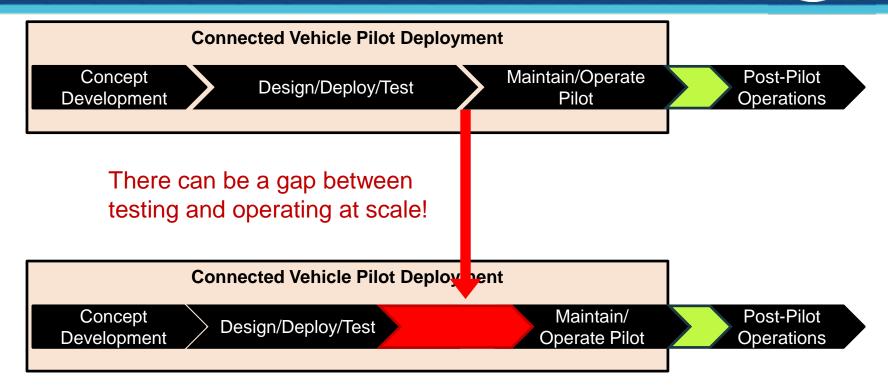
- Tampa (THEA) Pilot Technical Challenges
 - Applications and Devices Maturity.
 - Integration Testing.
 - Public Participation.
 - Certification Process.
 - Communication Channel Usage.
 - OTA and Security.

Wyoming DOT Pilot Deployment

Tony English

ITS AMERICA

PILOT VISION

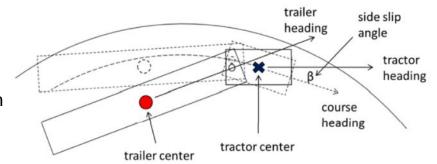

Fully integrated and secure CV System that transmits and receives data to/from other equipped vehicles and roadside infrastructure.

This entails:

- Complete integration with existing/future WYDOT systems and infrastructure.
- Secure data management.
- Innate interoperability with all external equipment/vendors and neighboring deployments.
- Continuous maintenance of its robust CV infrastructure.

However...Testing for pilot ≠ Testing for scale

ISSUES AND CHALLENGES


Connected Vehicle Pilot Deployment Concept Development Design/Deploy/Test Scale Scale

- Trucks are not cars, many standards and solutions do not fully apply—e.g., antenna location.
- Data volume increasing.
- OBU failing at scale, constant hardware and firmware updates.
- Technical challenges in ensuring a secure network—e.g.,
 SCMS integration and firewall compatibility.
- General code stability (crashing, GPS not coming on line, HMI disconnecting, offloading random).
- DSRC performance for OTA and offloading.
- And more...

OUR SOLUTION?

- Use Basic Security Message Parts 1 and 2
 - Tractor trailers can be described in BSM part 1 only (core)
 - Big car option
 - Tractor trailers can also be described using both BSM part 1 and part 2 BSM part 2
 - Tractor in BSM part 1 (core)
 - Trailer(s) in BSM part 2

- NY, THEA, and WYDOT have agreed to use BSM part 2
 - Can support tractrix algorithm for trailer(s) movement with only one IMU/OBU/GPS unit
 - Better support for standards (pivots described correctly)
 - Be careful if you acquire an OBU that only support BSM part 1 (will see on the tractor, making for an unsafe implementation)

WYDOT TECHNICAL CHALLENGE PANEL DISCUSSION

- Facilitator: Jonathan Walker
- Panelists:
 - Robert Rausch
 - Steve Novosad
 - Tony English

Wyoming DOT Pilot Technical Challenges

- Trucks are not cars, many standards and solutions do not fully apply—e.g., antenna location.
- Data volume increasing.
- OBU failing at scale, constant hardware and firmware updates.
- Technical challenges in ensuring a secure network—e.g., SCMS integration and firewall compatibility.
- General code stability (crashing, GPS not coming on line, HMI disconnecting, offloading random).
- DSRC performance for OTA and offloading.

Q&A

STAY CONNECTED

Contact for CV Pilots Program/Site AORs:

- Kate Hartman, Program Manager, Wyoming DOT Site AOR; <u>Kate.Hartman@dot.gov</u>
- Jonathan Walker, NYCDOT Site AOR; <u>Jonathan.b.Walker@dot.gov</u>
- Govind Vadakpat, Tampa (THEA) Site AOR; <u>G.Vadakpat@dot.gov</u>

Visit CV Pilot and Pilot Site Websites for more Information:

- CV Pilots Program: http://www.its.dot.gov/pilots
- NYCDOT Pilot: https://www.cvp.nyc/
- Tampa (THEA): https://www.tampacvpilot.com/
- Wyoming DOT: https://wydotcvp.wyoroad.info/

NYCDOT

Tampa (THEA)

WYDOT