

U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology

CONNECTED VEHICLE PILOT Deployment Program

New York City CV Pilot Deployment Results and Transition Plan

Jonathan Walker, USDOT; Keir Opie, Cambridge Systematics; Jinggin Gao, NYU; Mohamad Talas, NYCDOT

ITS Joint Program Office

Webinar Agenda

Purpose of this Webinar

- □ Share the deployment performance results from NYC Connected Vehicle Pilot
- Outline the plan after completion of Phase 3 Operations

Webinar Content

- Connected Vehicle Pilot Deployment Program Overview
- NYC CV Pilot Deployment Performance Evaluation Results and Transition Plan
- Stakeholder Q&A

Webinar Protocol

- Please mute your phone during the entire webinar.
- You are welcome to ask questions via chatbox at the Q&A Section.
- The webinar recording and the presentation material will be posted on the CV **Program documentation:** Pilots website.

CV Pilot Deployment Program Goals

NYC Connected Vehicle Project For Safer Transportation

The Three Pilot Sites

NYC Connected Vehicle Project For Safer Transportation

NEW YORK

U.S. Department of Transportation

4

Agenda

- Project Overview
- Data Collection and Processing
- Experimental Design & Analysis Plan
- Performance Results & Findings
- Transition Plan
- Perspective on CV Pilot Deployment
- Questions

Today's Presenters:

Keir Opie Cambridge Systematics

Jingqin Gao NYC CVPD Safety Analysis Team NYU

Mohamad Talas NYC CVPD Project Manager NYC DOT

NYC CVPD Performance Evaluation Lead

Project Overview

NYC Connected Vehicle Project For Safer Transportation

NYC CV Pilot Deployment Goals

Primary Goal:

Improving safety through the reduction of vehicle and pedestrian crashes, injuries, and fatalities

- Secondary Goal:
 - Improving mobility and reliability through crash prevention and lower crash severity
- Measure System Performance in meeting these goals
 - Data collection system was designed around project performance measures addressing privacy concerns and data collection costs

Department of Transportation

7

NYC CV Infrastructure

- Infrastructure: •
 - 470 Roadside Units (RSU)
 - 3000 Vehicles
- Safety applications: 13 •
- **Operations applications: 8**
- This is a *large scale* deployment with • challenges:
 - Location accuracy urban canyons
 - RSU density
 - Application arbitration/interference
 - DSRC media only channel management
 - First full-scale security deployment
 - · Security boundary expanded to include all **ITS** communications
- Utilize edge computing concepts to minimize bandwidth

W YORK CITY

NYC CV Safety Applications

Vehicle-to-Infrastructure

(V2I) Pilot Area

- Red Light Violation Warning
- Speed Compliance
- Curve Speed Compliance
- Speed Compliance/Work Zone
- Oversize Vehicle Compliance
 - Over Height
- Emergency Communications and Evacuation Information (Traveler Information)

Vehicle-to-Vehicle

(V2V) Citywide

- Forward Collision Warning
- **Emergency Electronic Brake Light**
- Blind Spot Warning
- Lane Change Warning/Assist
- Intersection Movement Assist
- Vehicle Turning Right in Front of Bus Warning

Pedestrian Applications

- Pedestrian in Signalized Intersection Warning to vehicles
- *Mobile Ped Signal System Vision Disability* Pedestrian Navigation Assistance

Department of Transportation

9

NYC Agencies CVPD Fleets

NYC Connected Vehicle Project For Safer Transportation

Agency	Passenger Cars	Pickups and Trucks
IYC Dept. of Transportation (DOT)	٠	•
IYC Dept. of Parks and Recreation (PARKS)	٠	•
IYC Dept. of Correction (DOC)	•	•
IYC Dept. of Environmental Protection (DEP)	٠	•
IYC Dept. of Homeless Services (DHS)	٠	
IYC Taxi and Limousine Commission (TLC- ICAS)	•	•
IYC Human Resources Administration (HRA)	•	
IYC Dept. of Citywide Administrative Services leet (DCAS)	•	
IYC Dept. of Education (DOE)	•	•
IYC Dept. of Buildings (DOB)	•	
IYC Administration for Children's Services (ACS)	•	•
IYC Dept. of Housing, Preservation and Development (HPD)	•	
IYC Dept. of Health and Mental Hygiene (DHMH)	٠	•
IYC Dept. of Design and Construction (DDC)	•	
YC Office of Chief Medical Examiner (OCME)	•	•
ITA Bus & NYCT		
IYC Emergency Management (OEM)	•	
IYC Dept. of Consumer Affairs (DCA)	•	•
nheuser-Busch InBev (ABI)		
IYC Dept. of Information Technology and elecommunications (DOITT)	•	
IYC Dept. of Probation (DOP)	•	
IYC CVPD Team Vehicle		•
axi Limousine Commission (Yellow Cabs)	•	
otal	1,662	967

Vans	Buses	Vehicle Installations	
•		1238	
•		511	
•	•	293	
•		159	
•		100	
•		98	
•		86	
		78	
•		78	
		69	
•		65	
		48	
•		45	
		38	
•		29	
	•	14	
		12	
		12	
•		10	
		9	
		6	
		1	
		1	
269	102	3,000	

Fleet Agency Vehicles

Vehicle CAN bus interface provides speed data for Dead Reckoning to improve location accuracy

Vehicle Make	Passenger Cars	Pickups and Trucks	Vans	Buses	Vehicle Installations
Chevrolet	165	162	168		495
Chrysler			2		2
Dodge			16		16
Ford	331	714	83		1,128
Freightliner		1			1
IC Corporation				85	85
International				3	3
New Flyer				3	3
Nissan	130				130
Nova				7	7
Orion				4	4
Ram		90			90
Toyota	1,036				1,036
Total	1,662	967	269	102	3,000

Fleet Weekly Operations

OBU-OBU V2V Contacts (Daily)

NYC Connected Vehicle Project For Safer Transportation

Data Collection & Processing

NYC Connected Vehicle Project For Safer Transportation

CV Event Record Obfuscation Process

NYC Connected Vehicle Project For Safer Transportation **2** U.S. Departme

CV Events by Type (Ingested)

Jan - Nov 2021: Ingested

- 189,374 Total Events
- 34% V2V, 66% V2I

All events uploaded to the TMC, no scrubbing, checks, or cleaning

Error and Quality Checks

Month	Received	% Errors	% Old App	% Test	% Released	# Released
Jan-Nov	189,374	12%	5%	3%	80%	151,146
21-01	19,323	29%	19%	4%	47%	9,085
21-02	9,843	10%	10%	5%	75%	7,410
21-03	16,294	6%	7%	8%	79%	12,862
21-04	16,213	7%	4%	5%	84%	13,589
21-05	17,549	10%	4%	3%	83%	14,514
21-06	15,870	10%	3%	2%	84%	13,391
21-07	16,479	11%	3%	2%	84%	13,844
21-08	18,000	11%	3%	2%	85%	15,210
21-09	18,924	11%	3%	1%	85%	16,116
21-10	21,698	10%	3%	1%	86%	18,553
21-11**	19,181	9%	3%	1%	86%	16,572

** November data is not yet finalized, December collection underway

NYC Connected Vehicle Project For Safer Transportation

17

 Events from our CVPD test vehicles

Old App: Older SW Firmware with known operational issues for only some CV Apps

Timestamp errors Location Errors Data Logging Errors Early Firmware Versions

Obfuscated Event Details

- All Detailed Lat/Long coordinates shifted to artificial cartesian coordinate system (meters)
- All unique IDs for vehicles, intersections (MAP or SPaT), or TIM messages removed;

PM

- Intersection IDs replaced with new letter codes; unique to one event only
- Time Bins:
 - Date becomes Month and Day of Week
 - \Box Time of day:
 - Overnight period (12:00 am 6:00 am):
 - Morning Peak (6:00 am 10:00 am):
 AM
 - Midday Period (10:00 am 3:00 pm): MD
 - Afternoon Peak (3:00 pm 8:00 pm):
 - Evening Period (8:00 pm 12:00 am):
- Location Bins:
 - NYC Borough (5: MN, QN, BK, BX, SI)
 - Roadway Type
 - RSU Equipped: Avenue or Street
 - Non-Equipped: Freeway, Avenue, or Other

eters) d;

ASD Event Log Obfuscation: Example

Recorded Event Data:

Obfuscated Event BSM Data:

NYC Connected Vehicle Project For Safer Transportation

CV Events by Type (Released)

Jan - Nov 2021: Released

- 153,354 Total Events
- 31% V2V, 69% V2I

Obfuscated event files released to the **ITS DataHub**

Weekly Events Released

NYC Connected Vehicle Project For Safer Transportation

Forward Collision Warning (FCW) Events

Jan 1 – Nov 30, 2021:

33,106 events

V2V citywide

Events Per 0.25 km

Speed Compliance (SPDCOMP) **Events**

1

Jan 1 – Nov 30, 2021:

85,293 events

V2I areas only

Experimental Design & Analysis Plan

NYC Connected Vehicle Project For Safer Transportation

Performance Measurement Program

Safety is Job #1.

Once alerts are activated in a vehicle, they won't be silenced.

User Needs related to Performance Measurement

- Maintain privacy of users throughout pilot and data collection
- No enforcement
- No driver evaluation

Performance Measurement Program considers:

- Consider impacts of CV data combined with data from other sources.
- Approach to collecting the performance information.
- Approach to using data collection bins of performance information.
- Control Group vs Treatment Group

FHWA-JPO-16-302.

Performance Measurement and Evaluation Support Plan - NYCDOT

Vehicle Experimental Design

Fleet Transistion: May 20 - May 31, 2021

Time for the Majority of Events to Transition to Active Alerts

LEGEND

CB: Control Group Before	PC: Passenger Cars & SUVs
CA: Control Group After	TR: Pickup and Work Trucks
TB: Treatment Group Before	VN: Vans
TB: Treatment Group After	BU: Buses (Transit or non-Transit

NYC Connected Vehicle Project For Safer Transportation

operating

normal"

citywide

Control Vehicles ~ 7% of Fleet

Detailed Data Cleaning Prior to Analysis

- Additional steps taken to further clean and filter obfuscated records prior to analysis:
 - Illogical event warning time scales
 - □ Unreasonably high, zero, or constant speeds
 - Large elevation deltas between host and target vehicles
 - Stationary vehicles
 - Illogical trajectories: large gaps in BSMs, illogical relation to host and target vehicle
 - Detail vehicle trajectory speed cleaning (illogical speeds, speeds inconsistent with) trajectory coordinates)
- Clean and repair when feasible
- Remove from consideration where not feasible

Safety Analysis - Methodology

NYC Connected Vehicle Project For Safer Transportation

Surrogate safety measure (SSM) Simulation Analysis

Calibrate both safety and operational measures

Incorporate driver behavior models

Multi-objective stochastic optimization

Safety Analysis – Methodology (ASD Data)

Gain Score Method

A commonly used method to analyze beforeafter control-treatment group design, is adopted (Kim and Steiner 2021).

Safety Effect =
$$\left(\frac{1}{n_{T,A}}\sum_{i=1}^{n_{T,A}} PM_i - \frac{1}{n_{T,B}}\sum_{j=1}^{n_{T,B}} PM_j\right) - \left(\frac{1}{n_{C,A}}\sum_{k=1}^{n_{C,A}} PM_k - \frac{1}{n_{C,B}}\sum_{l=1}^{n_{C,B}} PM_l\right)$$

Before-after **Treatment**
group difference

 n_{TA} and n_{TA} represent the total number of events in the treatment group in the after period and before period respectively.

 n_{CA} and n_{CA} represent the total number of events in the control group in the after period and before period respectively.

PM is the safety performance measure used in the evaluation.

Kim, Y., Steiner, P.M., 2021. Gain scores revisited: A graphical models perspective. Sociological Methods & Research 50 (3), 1353-1375. Hayward, J., 1972. Near miss determination through use of a scale of danger. 51st Annual Meeting of the Highway Research Board 384, 24-34. Gettman, D., Pu, L., Sayed, T., Shelby, S., Siemens, I., 2008. Surrogate safety assessment model and validation. FHWA

NYC Connected Vehicle Project For Safer Transportation

Account for potential unobserved confounding factors.

Time to Collision (TTC)

The time for two vehicles to collide if they continue at their present speeds and on the same path (Hayward 1972).

The calculation of TTC is largely adopted from the Surrogate Safety Assessment Model (SSAM) software (Gettman et al. 2008).

Position

$$TTC(t) = \frac{X_l(t) - X_f(t) - L_l}{V_f(t) - V_l(t)}$$

TTC(t): Time to collision at time t

 $v_{r}(t)$: Speed of the following vehicle at time t

 $v_t(t)$: Speed of the leading vehicle at time t

 $X_{l}(t) - X_{f}(t)$:

Relative distance between the leading and the following vehicle at time t

Safety Analysis – Methodology (Crash Analysis)

Survival Analysis Approach

- Model time intervals between two consecutive crashes instead of crash frequency
- Relax the assumption of the reference group
 - Allows the evaluation of NYC CVPD since V2V applications can be triggered at any locations

Xie, K., Ozbay, K., Yang, H., Yang, D., 2019. A new methodology for before-after safety assessment using survival analysis and longitudinal data. Risk analysis 39 (6), 1342-1357.

NYC Connected Vehicle Project For Safer Transportation

a multiplicative factor used to compute expected number of $CMF = exp(\beta_T).$

$$f(t_{ij} | \lambda_{ij}) = \lambda_{ij} \exp (\lambda_{ij}) = \beta_0 + \sum_{p=1}^{p} \beta_p \lambda_{ij}$$

 λ_{ij} denotes the crash hazard parameter during coefficients to be estimated.

Crash modification factor (CMF), crashes after implementing a given countermeasure, can be calculate as

 $-\lambda_{ii}t_{ii}$

$X_{pii} + \beta_T \text{Treatment}_{ii} + \varepsilon_i$

the *i*th time interval at *j*th site. t_{ij} denotes the *i*th time interval at *j*th site. β_0 , β_p , and β_T are model

Simulation-Based Surrogate Safety Measures (SSM) Analysis

- Base model is calibrated to both operational (volume, travel times, turning movements) and safety measures (traffic conflicts severity distributions).
- Open-source micro-simulator SUMO
- Integration of 7 CV App (5 V2V, 2 V2I) and driver behavior model
- Multi-objective stochastic optimization, about 400 simulation hours

PED-SIG Experimental Design

- Recruited 24 volunteer participants with vision disabilities via local and national organizations working with blind
- Participants navigated intersections using PID accompanied by NYU Institutional Review Board (IRB)-certified researchers.

Highlights:

- Four semi-protected • intersections
- Six predefined routes, • each made up of two crosswalk crossings
- Data collected from • operational data logs, field observation and pre- and postexperiment surveys

NYC Connected Vehicle Proiec For Safer Transportation

User Interface for the PED-SIG **Mobile Phone Application**

Performance Results & Findings

NYC Connected Vehicle Project For Safer Transportation

Qualitative Results – Driver Surveys

- Three surveys conducted:
 - □ **Pre-deployment**: Last month of before period
 - Early-Deployment: 1-2 Months into after period
 - □ Late-Deployment: 4-5 Months into after period
- Focus areas for questions:
 - Vehicle Usage on a typical day
 - Attitudes and perception of CV technology and Driving Safety in NYC
 - User experience with CV Apps (after period surveys only)
 - Basic demographics

Driver Survey Findings

- Typical respondent:
 - $\hfill\square$ DOT employee
 - Drives in Manhattan and Queens
 - More than 10 years experience driving in NYC for work
 - Drives 20-50 miles* per day
 - *higher than typical vehicle use
 - Likelihood of a crash or near crash with:
 - Another Vehicle: Slightly likely
 - A Pedestrian or Bicyclist: Slightly likely
 - Off-road or infrastructure: Not at all likely

Concerns about CV Technology:

Driver Survey Findings – User Experience (1)

- Frequency of alerts heard varied evenly from never to many times per day
- Majority found alerts too loud
 - □ Somewhat loud 38%, Much too loud 22%
- Majority found alerts distracting:
 - □ 17% Slightly, 30% Moderately, 19% Very, 23% Extremely
- Majority found alerts helpful:
 - □ 23% Slightly, 27% Moderately, 8% Very, 1% Extremely
- Have the alerts affected how you drive?
 - □ No: 70%
 - Yes: 30% (split 20% very negative, 23% negative, 48% positive, 10% very positive)

Department of Transportation

36

Driver Survey Findings – User Experience (2)

38% reported alerts helped them drive more safely
 Apps reported as helpful:

NYC Connected Vehicle Project For Safer Transportation

Analytic Results

- App Specific Analysis that follows:
 - ASD-based Analysis:
 - Number of events refers:
 - CV event file warning logs included in the analysis
 - From January April (before period) and June September (after period).
 - Events remaining after all error checking, obfuscating, cleaning, and filtering is complete
 - SSM-based Analysis:
 - Simulation of CV apps based on driver behavior response analysis from event logs
 - Assumed a 5% CV market penetration rate

Safety Analysis Results SPDCOMP: Speed Compliance

- Number of events:
 - □ 40,635

- ASD-based Analysis:
 - Compared to silent warning scenarios, there are additional 47 events per 1,000 SPDCOMP events that driver slowed to the speed limit when treatment was enabled 📿
- Driver behavior response:
 - \square 0.148 m/s² extra deceleration on average after speed compliance warnings were issued 🕑
 - $_{\Box}$ 0.619 s reduction in time duration to slow down to speed limit \bigcirc
 - Minor reduction (<1 s)

Statistically significant at 95%

Safety Analysis Results SPDCOMP: Driver Response Example

-10

-20

EW YORK CITY NYC Connected Vehicle Project For Safer Transportation

Safety Analysis Results CSPDCOMP: Curve Speed Compliance

Number of events:

27

- ASD-based Analysis:
 - \sim 8.750 mph reduction in vehicle speeds at curve entry \checkmark \square 0.691 m/s² reduction in lateral acceleration in the curve
- Driver behavior response:
 - \square 0.908 m/s² decrease in deceleration difference
 - In general, drivers did not decelerate after being given the curve speed compliance warning

Statistically significant at 95%

Safety Analysis Results SPDCOMPWZ: Speed Compliance in Work Zone

- Number of events:
 - □ 2,665
- Driver behavior response:
 - There is an extra 0.427 m/s² deceleration from the drivers on average П after being issued the warnings 🕗
 - $_{\rm o}$ 2.260 s reduction in time duration to slow down to speed limit \checkmark

Statistically significant at 95%

Safety Analysis Results V2V Applications

Statistically significant at 95%

Marginally insignificant at 95%

CV App	# of Events	15 th Percentile TTC - ASD		15 th Percentile TTC – SI
FCW	12,255	0.198 s increase	Θ	1.60 s increase
EEBL	107	Insignificant according to 95%		1.58 s increase
BSW	738	Insignificant according to 95%		2.43 s increase
LCW	873	0.265 s increase	Θ	2.03 s increase
IMA	2,666	2.951 s increase	\oslash	_

Safety Analysis Results V2V Applications - Driver Responses

	# Events in Treatment Group	Reacted	No Reaction	
FCW	2,263	18%	82%	
EEBL	68	100%	0%	
BSW	473	84%	16%	
LCW	472	84%	16%	
RLVW	1,114	100%	0%	

Clustering of Driver Responses Based on Speed-Time Relationship

🕗 U.S. Departme

Safety Analysis Results RLVW: Red Light Violation Warning

- Number of events: 2,073
- ASD-based Analysis:
 - Compared to silent warning scenarios, there are approximately152 fewer likely redlight violations* per 1,000 RLVW events when treatment was enabled
- Driver behavior response:
 - Drivers tended to decelerate approximately 0.137 m/s² more after RLVWs were issued
 - 0.083 s reduction in time duration to first deceleration after warning
- Simulation-based SSM Analysis:

1.20 s increase in 15th percentile TTC values

*Drivers did not come to a full stop after receiving a red-light violation warning.

Marginally insignificant at 95%

Statistically significant at 95%

Safety Analysis Results PEDINXWALK: Pedestrian in Crosswalk

- Number of events: 20
- Simulation-based SSM analysis
 - 1.80 s increase in 15th percentile TTC values for vehicle to pedestrian conflicts

NYC Connected Vehicle Project For Safer Transportation

Statistically significant at 95%

Thermal Sensor Pedestrian Detection

Safety Analysis Results Crash-Based Analysis

Challenges:

- Crash records cannot be linked to instrumented vehicles due to the privacy/liability concerns.
- Thus, crashes involving all vehicles in NYC during the study horizon are used for crash analysis.
- Other safety-related confounding factors that occurred simultaneously with the NYC CVPD, including the COVID-19 pandemic, Vision Zero projects, planned special events, and so on.
- The crash analysis results should be interpreted as a combined treatment effect for all the potential safety-related "treatments" that occurred simultaneously around NYC during the NYC CVPD implementation period and may not be solely due to the CV applications.

Evaluation Results - Crash-Based Analysis

Rear-end Crashes (FCW & EEBL)

- Number of rear-end crashes (NYPD crash database): 4,581
- Crash modification factors (CMFs):
 - Injury crashes: 0.947
 - Reduction in injury rear-end crashes after account for crash exposure
 - Property damage only (PDO) crashes: 0.906
 - Reduction in PDO rear-end crashes after account for crash exposure

Side-swipe Crashes (BSW & LCW)

- Number of side-swipe crashes (NYPD crash database): 1,471
- □ CMFs:
 - Injury & Fatal crashes: 0.985 (X)
 - PDO crashes: 0.850
 - Reduction in PDO side-swipe crashes after account for crash exposure

Cra

A multiplicative factor to compute expected # crashes after implementing a given countermeasure.

- Statistically significant at 95%
- Marginally insignificant at 95%
- Statistically insignificant at 95%

Crash modification factor (CMF)

Crash Exposure

Traffic volume data are used as crash exposure to account for the COVID-19 recovery.

PED-SIG Evaluation Results

NYC Connected Vehicle Project For Safer Transportation U.S. Departmer

Operation data logs and field observations Approximately **170 runs**, each made up of two crosswalk crossings, were completed.

Performance Measures:

- Pedestrian crossing speed
- Pedestrian crossing travel time
- Waiting time at intersection for crossing
- Times out of crosswalk

PED-SIG Evaluation Results (2)

Main Findings:

- 63% of the participants veered off the crosswalk at least once. ullet
- 54% of them crossed the streets faster than the 3.5 ft/s assumption used for signal timing ۲ design.
- The waiting time per crosswalk varies among different participants. ullet

	Crossing speed (ft/s)	Avg crossing time per crosswalk (s)	Avg waiting time per crosswalk (s)	Out of Crosswalk (Avg #times)
Mean	3.6	9.6	31.0	1.4
Std	0.9	2.4	15.9	1.4
15 th /85 th Percentile	[2.6, 4.2]	[7.7, 11.0]	[14.9, 43.0]	[0.0, 2.3]

.S. Department of Transportation

CV Transition Plan

NYC Connected Vehicle Project For Safer Transportation

Next Steps

- **Original plan** anticipated a sustainable investment for future connected vehicles
- **Driven by FCC First Report and Order** to clear the lower 45 MHz by July 2022 \succ
- Additional complications create substantial complexity with respect future temporary configurations
- **Suspend DSRC transmissions** after completing the project's Phase 3 Operation
- New York City is not abandoning CV concepts \succ

NYCDOT Perspective on CV Pilot Deployment

- > Successful project! Produced large data set for future research
- > Equipping and managing a fleet is challenging with many "black box" components

Many Lessons Learned and Contributions to CV Community

- Urban Deployment and Performance Reliability \succ
- Maturity of CV Deployment, Operations, and Maintenance at scale
- Managing Security Aspects for CV Deployment \triangleright

NYC Cooperative Driving Use Cases

CD for ACV Use Cases Mapping to NYC:

- 1) Pedestrian and bicyclist safety through cooperation
- 2) Cooperative work zones
- 3) Cooperative intersection management.

See full use cases <u>here</u> (<u>https://c2smart.engineering.nyu.edu/wp-</u> content/uploads/2021/12/CD_for_ACV_NYU_UseCase_DataAnalysis.pdf</u>)

With deployed CV infrastructure and experience in NYC, we could:

Enable "Cooperative Perception"

 Cooperative Driving for Advanced Connected Vehicles (CD for ACVs) at urban intersections in NYC

- Develop co-simulation environments for safe and realistic testing of CD for ACV
 - Cyber-physical testbed for prototype testing, learning, evaluation and integration of FHWA's CARMA.

Potential Cyber-Physical Testbed

NYC could integrate its facilities for an expanded CARMA cyber-physical testbed.

NYC Connected Vehicle Project For Safer Transportation

Testbed

Questions?

NYC Connected Vehicle Project For Safer Transportation

Stay Connected

Contact for CV Pilots Program/Site AORs:

- Kate Hartman, Program Manager, Wyoming DOT Site AOR; Kate.Hartman@dot.gov
- Jonathan Walker, NYCDOT Site and Tampa (THEA) Phases 4 AOR; Jonathan.b.Walker@dot.gov
- Govind Vadakpat, Tampa (THEA) Phases 1-3 AOR; G.Vadakpat@dot.gov
- Walter During, Evaluation COR, <u>Walter.During@dot.gov</u>

Visit CV Pilot and Pilot Site Websites for more Information:

- CV Pilots Program: <u>http://www.its.dot.gov/pilots</u>
- NYCDOT Pilot: <u>https://www.cvp.nyc/</u>
- Tampa (THEA): <u>https://www.tampacvpilot.com/</u>
- Wyoming DOT: https://wydotcvp.wyoroad.info/

U.S. Department of Transportation

60