V2V Communications Security Project Update

ITS Advisory Committee Update

Mike Shulman, Ford / CAMP VSC3
Vehicle Communications + GPS: A New Safety Sensor

- Offers new features not possible with existing obstacle detection-based driver assistance systems
- Enhances existing obstacle detection-based driver assistance systems
- However, only works when the vehicles in conflict are equipped
Interoperable Communication: SAE J2735 Message Set

- Periodic safety message broadcast (10 times per second)
- Event-driven safety message broadcast (immediate on event occurrence)

Part I is mandatory in the Basic Safety message

Part II
- Basic Vehicle State
 - (Veh. ID, Seq. #, time, position, motion, control, veh. size)
 - *Part I is mandatory in the Basic Safety message*
- Vehicle Safety Extension
 - Event Flags
 - Path History
 - Path Prediction
 - RTCM Corrections
 - *Required for V-V safety applications, but not in every message*
- Other optional safety-related data
Why we need security

• The receiver of a message is not able to determine, without additional mechanisms, whether

 1. a message originates from a trustworthy and legitimate device, and whether

 2. the message was modified between sender and receiver.
What is a PKI?

1. Issue certificate and private key

2. Sign message (using private key) and send message, signature & certificate

3. Verify certificate (using CA’s public key) and verify message (using certificate’s public key)
V2V Security Communications

- Communication Channel from Vehicles to SCMS
 - Send misbehavior reports (messages that led to warnings, messages flagged by local misbehavior detection and casual reports)

- Communication Channel from SCMS to Vehicles
 - Issue New Certificates
 - Update Vehicles with Certificate Revocation List

SCMS
Issue and renewal of certificates
Revocation of certificates
Initial Deployment Model

Security Credential Management System (SCMS)
- SCMS structure with:
 - Certificate Authority (CA)
 - Registration Authority (RA)
 - 2 Linkage Authorities (LAs)
 - Preliminary Misbehavior Authority, etc.
- Capability to generate and provide certificates valid for use for three (3) years from initial deployment
 - **Option 1**: re-useable, non-overlapping, 5 minute certificates valid for 3 years
 - **Option 2**: re-useable, overlapping certificates valid for 1 week for each week for 3 years

On-Board Elements (OBE)
- OBE requirements:
 - FIPS 140 Level 2 or equivalent security processor
 - Encrypted storage of certificates on-board
- Capability to:
 - **Option 1**: initially load 3000 non-overlapping certificates, re-use for 3 years, 5 minute duration each use – 300kB certificate storage
 - **Option 2**: initially load 7 - 40 overlapping certificates per week, sufficient for 3 years (~6000), re-use during week if necessary, change at OEM discretion – max. 600kB certificate storage

Communications between OBE & SCMS
- Communications required after 3 years for:
 - New certificate request
 - Certificate Revocation List
 - Misbehavior reporting
- Also possible more frequently, if supported by opt-in connections

Summary
- SCMS risk mitigation techniques are well-known from similar implementations
- OBE requirements are technically feasible
- Security portion < 20% of total OBE cost
- Connectivity not required for the first 3 years
Full Deployment Model

Security Credential Management System (SCMS)

- SCMS structure with:
 - Certificate Authority (CA)
 - Registration Authority (RA)
 - 2 Linkage Authorities (LAs)
 - Misbehavior Authority, etc.
- Capability to generate and provide certificates valid for use for <3 years from certificate request:
 - Option 1: re-useable, non-overlapping, 5 minute certificates valid for <3 years
 - Option 2: re-useable, overlapping certificates valid for 1 week for each week for <3 years

On-Board Elements (OBE)

- OBE requirements:
 - FIPS 140 Level 2 or equivalent security processor
 - Encrypted storage of certificates on-board
- Capability to:
 - Option 1: request and load 3000 non-overlapping certificates, re-use for <3 years, 5 minute duration each use – 300kB certificate storage
 - Option 2: request and load 7 - 80 overlapping certificates per week, sufficient for <3 years (~6000), re-use during week if necessary, change at OEM discretion – max. 600kB certificate storage

Communications between OBE & SCMS

- Communications required for:
 - New certificate request
 - Certificate Revocation List
 - Misbehavior reports
- Connectivity required:
 - Likely more frequently than every 3 years
 - Depends upon:
 - number of attackers
 - magnitude of the attacks
 - Difficult to estimate without actual operational experience

- Graceful evolution from initial deployment model
- OBE full deployment requirements supported by initial deployment vehicles
- Connectivity options, both default and opt-in, must expand by full deployment vehicles
Connectivity Requirements
For Different Penetration Levels and Attack Rates

<table>
<thead>
<tr>
<th>Attack Rate Penetration Levels</th>
<th>Benign Case: up to 100 devices/year cert extraction</th>
<th>Severe Case: up to 1000 devices/year cert extraction</th>
<th>Extreme Case: up to 10,000 devices/year cert extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>3 years</td>
<td>3 years</td>
<td>1 year</td>
</tr>
<tr>
<td>10%</td>
<td>3 years</td>
<td>3 years</td>
<td>4 months</td>
</tr>
<tr>
<td>50%</td>
<td>3 years</td>
<td>1 year</td>
<td>6 weeks</td>
</tr>
<tr>
<td>100%</td>
<td>3 years</td>
<td>6 months</td>
<td>3 weeks</td>
</tr>
</tbody>
</table>

Modeling target is less than one false alarm per week per equipped vehicle from intentional attacks. This may change as system matures and there is a better understanding about user acceptance of false alarms.
Summary of Highest Risk Levels for Privacy and Tracking Attacks

<table>
<thead>
<tr>
<th>Type of Attack</th>
<th>Initial</th>
<th>Full</th>
<th>Mitigation</th>
<th>After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking Vehicles using 1-Day Certificates by Funded Private Organizations</td>
<td>Medium to High</td>
<td>Medium to High</td>
<td>Use shorter duration for certificates, to make this attack more difficult, such as 5-minute certificates which are now assumed for initial and full CAMP models</td>
<td>Medium</td>
</tr>
<tr>
<td>Find and Track Vehicles by Government Organizations Assumptions: certificates are linked to VIN, a subpoena/warrant is not required & full RSE network deployed</td>
<td>Low</td>
<td>High*</td>
<td>Public SCMS: Do not link certificates to VIN and/or require legal process Private SCMS: Require legal process</td>
<td>Medium</td>
</tr>
<tr>
<td>Law Enforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Law Enforcement. Assumptions: using BSM information is advantageous as compared to current automated traffic enforcement systems and data would hold up in a court of law*</td>
<td>High*</td>
<td>High*</td>
<td>Under these assumptions, a technical mitigation for this risk has not yet been identified. Further technical and policy study is required.</td>
<td>TBD</td>
</tr>
</tbody>
</table>

* - US DOT technical team rankings are lower
Summary

1. The OBE requirements are technically feasible, but automotive hardware for the security components is not yet available. Suppliers estimate that the cost for the security portion is less than 20% of the total cost for the OBE.

2. With secure hardware, the team believes that connectivity is not required for the first three years. After that, more frequent connectivity is likely to be required but is increasingly difficult to estimate, since it depends upon the number of attackers and the magnitude of the attacks.

3. Mitigations for SCMS technical risks are well-understood from similar implementations. SCMS costs, funding and organization are being examined in a follow-on study.

4. Privacy and tracking attacks can most likely be addressed by using short-duration certificates. Having the appropriate policies and procedures in place will help prevent the perception that the system will be used for “big brother” tracking. Concerns about the use of this system for traffic enforcement need further technical and policy study.

Next Step: Analyze alternative connectivity options
Next Step: Analyze SCMS architectures and potential OEM roles
Assessment of Wireless Technology for Vehicle/Device Communication with Security Credential Management System (SCMS)

Main Discussion Topics
• Long-term technical stability
• Ability to support alternatives to user-paid subscriptions
• Technical capabilities to support privacy goals

Discussions with Industry Participants
• Cellular Carriers
• Wireless Device Manufacturers
• Wireless Technology Developers
• Satellite Radio Operators
• IEEE 802.22 Working Group
Assessment of Wireless Technology for Vehicle/Device Communication with Security Credential Management System (SCMS)

Preliminary Conclusions

- Long Term Evolution (LTE) is integrating previously diverse technology developments and is expected to continue on an evolutionary development path within a 5-10 year horizon

- Cellular network management systems are becoming more flexible in terms of support for non-traditional billing arrangements

- Satellite Radio may offer better-than-expected capabilities for Certificate Revocation List (CRL) distribution to vehicles
SCMS Design

System Oversight

Policy

Technical

Trust Distribution

Root CA

Intermediate CA

Certification Lab

LTCA (CSRs)

Request Coordination

RA

Location Obscurer Proxy

Misbehavior Authority

Global Detection

CRL Generator

CRL Broadcast

CRL Store

Device 1

Device 2

Device 3

Device 4