RWMP Connected Vehicle Research Track

Paul Pisano
Team Leader, Road Weather & Work Zones, FHWA

8 August 2012
Madison, Wisconsin
Contact: paul.pisano@dot.gov, 202-366-1301
Connected Vehicle Research Goals

All efforts support two goals:

1. Identify weather-related data elements to be included in the USDOT (NHTSA) Rulemaking decision

2. Demonstrate the value of connected vehicle data via the development, test and evaluation of a few key applications
Objective: Demonstrate road weather-specific benefits of connected vehicle data capture and management, leveraging investments in *Clarus*, MDSS, VDT, WDE and prototype applications.
Topics

• Road Weather connected vehicle applications
 - Concept of Operations
 - Benefit/Cost Analysis

• Vehicle Data Translator (VDT) 3.0 development

• Integrating Mobile Observations (IMO) project - lessons learned
RdWx CV Apps ConOps

• Vision for Use of Connected Vehicle Data in Practical Road Weather Applications (NCAR)
 - Focused on practical applications of VDT outputs
 - Five applications: MMS, MDSS, EMS, ATIS, Freight
 - In process of being published (FHWA-JPO-12-040)

• RdWx CV Applications ConOps (Booz Allen)
 - Scenarios / use cases based on:
 • NCAR’S High-level Vision Document
 • Established ties to DCM, DMA, V2I Safety, AERIS
 - Completion date expected August, 2012
RdWx CV Applications

- Enhanced Maintenance Decision Support System
- Information for Maintenance and Fleet Management Systems
- Variable Speed Limits for Weather-Responsive Traffic Management
- Motorist Advisories and Warnings
- Information for Freight Carriers
- Information and Routing Support for Emergency Responders
RdWx CV Apps B/C Analysis

- Estimate potential national costs and benefits resulting from the implementation of RdWx connected vehicle applications

- Being developed in two phases:
 - Phase I
 - Focuses on safety aspects of the applications
 - Due late August, 2012
 - Phase II
 - Focuses on mobility and environmental aspects
 - Due for completion December, 2012

- Will help establish the most critical weather-related vehicle data elements
Next Steps in Support of the USDOT (NHTSA) Rulemaking Decision (1/2)

- Support Safety Pilot data mining and analysis to understand impact of road weather in improving safety
 - Supplement Volpe’s analysis with specific focus on weather data

- Support related standards development efforts
 - Focus on identifying road weather related vehicular data needs for improving safety
Next Steps in Support of the USDOT (NHTSA) Rulemaking Decision (2/2)

- Define data needs via application development
 - Develop ConOps and engage stakeholders to validate RdWx applications (i.e. vehicle data) needs and benefits
 - Identify specific weather-related vehicle data requirements for RdWx applications
 - Develop, test and evaluate RdWx applications and algorithms to understand the usefulness of weather-related vehicle data
 - Conduct controlled experiments to characterize specific weather-related vehicle data elements
VDT 3.0

- Published *The Vehicle Data Translator V3.0 System Description* (FHWA-JPO-11-127)

- Improvements over VDT 2.0:
 - Enhanced ability to ingest additional probe data elements and data from ancillary sensors and systems (RH, \(T_{Pvmnt}\), Engine Data, Radar, Satellite, *Clarus*, *MADIS*...)
 - Use Weather Forecasts as inputs
 - Improved and additional Quality Checking Routines
 - Higher confidence in the VDT outputs (Pavement Condition, Visibility, Precipitation type/Rate, etc...)
 - The timeliness/latency and size of the data from IMO states seems adequate, considering the abnormally light winter
Integrating Mobile Observations Project (IMO) - Lessons Learned

- CAN-Bus/OBD data from vehicle probes is relatively easy to get and transmit
- Decoding/interpreting the Parameter Group Numbers (PGNs) and Suspect Parameter Numbers (SPNs) is very difficult
- The effort has resulted in significant progress identifying Wx-relevant PGNs and SPNs and creating a data dictionary, but there’s still room for improvement
- CAN-Bus/OBD data was successfully transmitted over 700MHz radio and Common Cellular Carrier Networks
- Mobile data has been successfully integrated into Clarus and a couple of state applications
Minnesota observations in *Clarus*
Note: similar to the QC done by *Clarus* on stationary data, the VDT performs quality checking test on the mobile data and flags it accordingly; it is not the intent for the VDT to diagnose the cause of the failure.
Mobile Data in Clarus - continued
Need Your Feedback

- What are we doing right?
- What are we doing that you think is unnecessary?
- What are we missing?