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Presentation Overview

= Eco-Approach and Departure Concept

* Field Study Setup

= Experimentation and Results

* Field Study Summary Findings and Recommendations
= Simulation Modeling Setup and Results

= Simulation Modeling Summary Findings
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Eco-Approach and Departure Concept

Application utilizes traffic signal phase and timing (SPaT)
data to provide driver recommendations that encourage
“green” approaches to signalized intersections

example scenarios:
1) Coast down earlier to a red light;

2) Modestly speed up to make it (safely) through the
intersection on green
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Signal Phase and Timing (SPaT)

* Data are broadcast from traffic signal controller
(infrastructure) to vehicles (12V communications)

e SPaT information consists of intersection map, phase
and timing (10 Hz), and localized GPS corrections

* Can be broadcast locally via Dedicated Short Range
Communication (DSRC) or cellular communications
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Variations of Analysis

Signal timing scheme matters: fixed time signals,
actuated signals, coordinated signals

Single intersection analysis and corridor-level analysis

Congestion level: how does effectiveness change with
amount of surrounding traffic

Single-vehicle benefits and total link-level benefits

Analysis Approach: increasing incremental complexity
and using previous results as “building blocks”

Initial Field Study: single vehicle, no traffic, fixed-timed
intersection

Simulation Modeling: multiple vehicles, examining the
sensitivity of other variables
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Field-Study
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Field Study Objectives

1) To provide quantitative data on the performance of this
initial AERIS eco-approach and departure application

2) To allow us to assess the practicality of implementation

3) To gain a better understanding of potential user
experience

4) To provide data that can later be used to both calibrate
and validate AERIS computer modeling efforts
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Eco-Approach Scenario Diagram
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Eco-Approach Driving Scenario 1 (cruise)

~t

e Vehicle is able to pass through the intersection on
green phase

e does not need to slow down or speed up
* Best scenario for fuel economy
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Eco-Approach Driving Scenario 2 (speed up)

v(t)
A

t. >t
* Vehicle needs to safely speed up to pass through the

intersection on green phase
* Energy savings due to not having to stop and idle
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Eco-Approach Driving Scenario 3 (coast down, stop)

v(t)
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t. 7t
d(t)
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t. -t

Vehicle needs to slow down to stop at the intersection
Energy savings due to slowing down sooner
SCenariO rEfe rence: m.et al., “Traffic energy and emission reductions at signalized

intersections: a study of the benefits of advanced driver information,” International Journal of Intelligent
Transportation Systems Research, vol. 7(1), pp. 49-58, 2009.
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Eco-Approach Driving Scenario 4 (coast down, no stop)
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* Vehicle needs to slow down to pass through the
intersection on green phase

* Energy savings due to not having to idle
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Velocity Planning Algorithm

» Target velocity is set to get through the green phase of the next signal
(time-distance calculation)

* |Initial velocity may be above or below target velocity

. objective is to: minimize |a|

SPaT —>|r.. <
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engine

v, = velocity of the vehicle at the instant it enters the DSRC range

t = total time taken to reach the intersection

t, = the portion of time spent accelerating or decelerating with an acceleration rate a
(t-t,) = portion of time spent traveling at uniform velocity before reaching the intersection

reference: M. Barth, S. Mandava, K. Boriboonsomsin, and H. Xia “Dynamic

ECO-Driving for Arterial Corridors”, Proceedings of the IEEE Forum of Integrated e U.S. Department of Transportation 14
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Previous Studies & Results with Algorithm

Initial Simulation:

Without With % Diff. | p-value of
LDV24 Avg. S.D. Avg. S.D. in Avg. t-test
Fuel (g/mi1) 118.3 13.2 103.8 9.3 -12.3 8.7E-06
CO, (g/mi) 371.0 41.2 318.8 25.3 -14.1 3.2E-07
TT (sec) 456.7 | 60.7 451.9 56.9 -1.06 0.635
references:

S. Mandava et al., “Arterial Velocity Planning based on
Traffic Signal Information under Light Traffic Conditions”,
2009 IEEE Intelligent Vehicle Systems Conference,

October, 2009.

2011.

M. Barth et al., “Dynamic ECO-Driving for Arterial Corridors”,
Proceedings of the 2011 IEEE Forum on Integrated
Sustainable Transportation (FISTS), Vienna, Austria, June,

Real-World Results of FHWA EAR project with BMW, UC
Berkeley at Richmond Field Station (4/2012):

uninformed informed Improvement
Fuel o
(1/100km) 10.23 8.84 -13.59%
Travel time 40.69 40.3 10.96%
(sec/trip)

reference:

H. Xia et al., “Field Operational Testing of ECO-
Approach Technology at a Fixed-Time Signalized
Intersection”, 2012 IEEE Intelligent Vehicle
Systems Conference, Anchorage, AK, Sept 2012.
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SPaT Communication Setup at Riverside

Traffic Signal Controller

SPaT
processor Road-side
DSRC
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Vehicle Setup at Riverside

Driver
display
advising
driver

Vehicle
computer
interprets
data,
performs
velocity
planning

On-board DSRC
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Riverside Testing
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SPaT Communication Setup at TFHRC

Driver
display
advising
driver

Traffic Signal Controller
Vehicle
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performs
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Vehicle OBD-Il data
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e U.S. Department of Transportation 19



Signal Phase and Timing System Setup at TFHRC

Road3|de

controller =

DSRC-enabIed vehlcle
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Vehicle Setup at TFHRC

} 1 A A=y

TeSt VEhICIe Vehicle OBD-ll data @&
(Jeep Grand Cherokee) \ =

On-board computer

PSEUdO'daShboard (driver interface) e U.S. Department of Transportation 21



Graphical User Interface for Testing

Speedometer SPaT tachometer

Advisory
speed

UCRIVERSII]E

1000
em

Real-time MPG Vehicle location
J Indicator

Distance to Intersection location
intersection Indicator
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Graphical User Interface for Demonstration

Speedometer tachometer

|
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Map of Test Site (TFHRC)
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STOL Intersection at TFHRC

1) Signal set up for fixed timed signal phasing (26-seconds
green, 4-seconds yellow, then 30-seconds red)

2) SPaT message sent from intersection controller at 10 Hz
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Test Matrix

Speed\Time 0 sec 5 sec 10 sec 15 sec 55 sec

15 mph

20 mph

25 mph

30 mph

35 mph

* Minimum three data runs per cell (more if high
variability)

* “uninformed” driving performed for each cell, then
“informed” driving performed for each cell

* Data collected in each cell: velocity trajectory, fuel
economy, driver “score”
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Scenario Mapping in Test Matrix

V/T 0 5 10 15 20 25 30 35 40 45 50 55

20 Scenario 4 Scenario 1 Scenario 3
mph

25 S3 Scenario 4 Scenario 1 S2 S3
mph

30 S3 Scenario 4 Scenario 1 S2 Scenario 3
mph

35 Scenario 3 Scenario 4 Scenario 1 S2
mph

40 Scenario 3 Scenario 4 Scenario 1 S2 S3
mph

V/T 0 5 10 15 20 25 30 35 40 45 50 55

20 S1 Scenario 2 Scenario 4 S3
mph

25 S4 Scenario 1 Scenario 3 Scenario 4
mph

30 Scenario 4 Scenario 1 Scenario 3 S4
mph

35
mph

40
mph

Riverside
Test Matrix

TFHRC
Test Matrix
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Example Scenario 1 (cruise)
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Example Scenario 2 (speed up)
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Example Scenario 3 (coast then stop)

UCRIVERSIDE |
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Example Scenario 4 (coast, no stop)
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Field Study Results: Fuel Savings (% improvement)

Average Fuel Saving from OBD (Im)

Vel\Time Os 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s 55s saving %
20 mph 11.4 15.3 21.4 6.6 5.0 3.1 0.2 2.1 -2.7 1.7 2.2 6.0 16.4
25 mph 3.3 13.8 19.6 15.3 0.7 2.0 0.4 0.5 -1.5 3.3 6.8 2.4 17.7
30 mph -1.9 9.5 16.0 13.0 0.8 0.6 2.2 3.3 3.5 19.6 11.0 10.1 25.6
35 mph 7.1 9.3 7.2 25.1 29.3 1.0 0.2 -1.3 1.3 -1.1 2.3 6.6 28.4
40 mph -3.5 3.9 -1.6 12.8 5.8 1.0 1.6 3.4 0.6 0.7 4.5 4.8 11.0

Riverside Testing Results

delay into cycle (sec)

V/T 0 5 10 15 20 25 30 35 40 45 50 55 %

savings

20 8.6 -11.3 | -10.2 -5.2 -9.3 -13.1 13.8 7.1 9.4 -13.2 12.5 24.0 2.5%

25 17.8 | 22.5° 7.0 0.9 6.4 -9.4 -11.1 16.0 12.2 18.9 14.7 14.8 | 18.1%

30 -1.2 4.3 1.5 2.3 -1.2 6.7 -4.4 8.8 16.3 10.3 21.9 10.6 | 11.2%

35

40

TFHRC TESting Results e U.S. Department of Transportation 32



Typical Velocity Trajectories
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Driver “Score”

e Measure of how well the driver follows the
recommended speed

e Useful for testing phase, can eliminate bad runs
* Score definition:

A: actual speed;

A n T T: target speed.

SCORE:IOO(l—l 'A_T|)
n

n=l1

* highest possible score: 100; lowest possible score: 0

Experienced Driver Scores:

Driver 1: 87.9 Driver 2: 90.0 Driver 3: 89.0
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Model-Based Estimation

mph

delay into cycle (sec)
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Emissions Model
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delay into cycle (sec)

Velocity trajectories
from testing

Vehicle Type selected to
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<€4—— be Composite 2012
Light-Duty Vehicle

Estimated Energy and
Emissions for composite
Light-Duty Vehicle
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Composite Vehicle Fuel and Emissions Savings

Vel\Time Os 5s 10s 15s 20s 25s [ 30s | 35s 40s | 45s | 50s 55s %
20mph | 19.23 | 18.59 | 19.75 | 4.86 | 3.24 | 2.12 | 1.00 | 4.36 | -2.73 | 9.59 | 12.80 | 16.14 | 21.42
25 mph 15.34 | 21.14 | 23.02 | 12.23 | 1.87 | -0.77 | 0.56 | 0.94 | 0.73 | 7.20 | 13.72 | 11.79 | 22.24 Fuel and C02 Savings
30 mph | 15.62 | -0.97 | 6.55 | 7.09 | -1.96 | 0.16 | 0.35 | -0.62 | -0.11 |29.70| 11.45 | 11.99 | 18.42 . .
35mph | 7.77 |18.75 | 13.74 | 19.42 [ 10.70 | 1.12 [-1.02] -0.36 | -0.13 | 4.68 | 6.61 | 9.86 | 25.45 for Composite Vehicle
40 mph -4.24 | 456 | 11.58 | 10.24 | 3.21 | 0.03 (531 | 3.40 | 2.70 | 0.14 | 0.29 | 7.64 | 15.82
Vel\Time Os 5s 10s 15s 20s 25s [ 30s | 35s 40s | 45s | 50s 55s %
20 mph 1.3 1.4 1.5 2.1 0.6 0.3 0.2 5.9 -0.1 0.8 1.0 1.3 47.6
25mph | 13 | 25 | 1.8 [ 11 | 03 | 01 [01] 02 | 01 |05 ]| 12 | 10 | 371 CO Savings for
30 mph 0.7 0.0 0.2 0.4 -0.3 0.0 0.2 | -0.2 0.1 0.0 0.4 0.8 12.1 Composite Vehicle
35 mph 2.4 7.5 5.3 2.1 5.9 -0.3 | -0.2 0.0 0.1 0.4 1.0 0.9 61.9
40 mph -0.1 0.9 1.1 0.9 0.1 0.0 0.9 0.1 0.7 0.0 | -0.1 0.1 36.2
Vel\Time Os 5s 10s 15s 20s 25s | 30s | 35s 40s | 45s | 50s 555 %
20 mph 0.10 | 0.11 | 0.10 | 0.09 | 0.05 1.15 | 0.01 | 0.06 | -0.01 | 0.06 | 0.08 | 0.10 | 52.22 .
25 mph 0.07 | 0.13 | 0.14 | 0.09 | 0.06 | 0.02 (-0.01| 0.02 | 0.01 |0.03 | 0.07 | 0.07 | 27.26 HC Savmgs fOI'
30 mph 0.04 | 0.00 | 0.00 | 0.01 | 0.03 | 0.05 | 0.00 | 0.01 | -0.01 [ 0.00 | 0.04 | 0.00 7.05 Com pOSite Vehicle
35 mph 0.06 | 0.13 | 0.10 | 0.14 | 0.11 | -0.05 |-0.01| -0.01 | 0.00 | 0.00 | 0.07 | 0.07 | 27.90
40 mph -0.01 | -0.10 | 0.02 | -0.01 | -0.02 | -0.02 | 0.08 | 0.01 | 0.30 | 0.06 | 0.09 | 0.05 | 16.87
Vel\Time Os 5s 10s 15s 20s 25s [ 30s | 35s 40s | 45s | 50s 55s %
20 mph 0.3 0.3 0.3 0.2 0.1 1.1 0.1 0.2 0.0 0.1 0.2 0.2 52.2 .
25mph | 02 | 03 | 03 | 02 | 01 | 00 |00| 01 | 0.0 |01 | 02 | 02 | 385 NOx Savings for
30 mph 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 12.2 Composite Vehicle
35 mph 0.2 0.3 0.3 0.3 0.3 -0.1 | 0.0 0.0 0.0 0.1 0.1 0.1 40.6
40 mph 0.0 0.1 0.2 0.2 0.3 0.0 0.1 -0.1 0.1 0.0 0.0 0.0 22.8
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Field Study Summary

* On average, significant fuel savings achieved

* High degree of variability between runs; multiple runs
in each cell are needed

* Sensitive to driver variability
* Sensitive to terrain variability

* With increased DSRC range, the earlier the maneuver
can be planned and executed

* Traveling at slower speeds allows for higher chance of
passing on green

e Sensitivity analysis is being carried out in simulation
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Field Study Recommendations

 SPaT enhancements:
— Broadcast of next-next-phase information

— Broadcast of intersection GPS-WAAS latitude & longitude
for better range estimation

* Need to extend to Actuated Signals

e Better HMI (human-machine interface) development,
OR

* Should consider semi-automated driving through
intersection (e.g., interface to ACC)
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Simulation Modeling

e U.S. Department of Transportation 39



Modeling Objectives

* Expand the field study results by conducting detailed
simulation modeling and test benefits under different
traffic conditions, network conditions, vehicle type,
penetration rates, and other variables

Modeling initially focused on a “generic intersection”

Simulation parameters (car-following logic, lane-
change behavior) calibrated using NGSIM data sets

Modeling focused on El Camino Real network with
real-world traffic and network data (Palo Alto, CA)

Later tie-in with travel demand models
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Modeling Setup

e Paramics traffic simulation model with API plug-ins
(eco-approach method, energy/emissions models)
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Modeling Results: congestion and penetration

* Single generic intersection, fixed-timed signal
* Less effectiveness with increased congestion
* Higher effectiveness with increased penetration of technology

* Total network savings is slightly higher than sum of equipped
vehicle savings

14
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reference:

H. Xia, et al.,“Dynamic ECO-Driving for Signalized Arterial Corridors and its Indirect (‘ U.S. Department of Transportation 42
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Modeling Results: multiple intersections
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Modeling Results: multiple intersections

Uncoordinated Signal Control:

Signal timing is set to be uncoordinated between intersections
(no “green wave”)

Eco-approach algorithm applied on all three intersections,
cross traffic included in analysis

The links in this network are short, which affects the
effectiveness of the eco-approach algorithm

Moderate Savings: 5% - 10% overall

Uncoordinated

1.00

474.17

1034.42

3.94

99.63

453.52

1008.34

4.58

104.92

4.36

-0.64

-5.29

0.77

444.34

951.92

2.84

86.88

406.45

885.94

3.27

87.13

8.53

-0.44

-0.25

0.38

432.58

901.97

2.14

77.70

389.42

824.76

2.25

77.54

9.98

-0.11

0.16
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Modeling Results: multiple intersections

Coordinated Signal Control:

« Signal timing is set to be coordinated between intersections (real-world)
* Coordinated signal control results in ~18% fuel reduction over uncoordinated

* Eco-approach algorithm applied on all three intersections, cross traffic
included in analysis

* Moderate Savings on total traffic: 5% - 10% overall

*  Minimum Savings on coordinated mainline flow: 1% - 3%

Total traffic

1.00 380.97 788.32 2.42 63.94 359.02 749.49 2.53 64.31 5.76 -0.11 -0.37

0.77 359.64 725.33 1.61 55.05 333.58 679.95 1.73 55.21 7.25 -0.12 -0.16

0.38 355.75 698.19 1.24 51.47 319.44 638.10 1.18 51.25 10.21 0.06 0.23

IS0 Mainline flow

0.13 287.08 1.19 567.19 1.27 50269 5.23 298.63 1.61 587.86 2.34 51594 9.45 3.87 3.52 2.57
0.33 291.47 1.25 580.50 1.22 136618 6.20 297.38 0.70 589.75 0.42 135907 5.22 1.99 1.57 -0.52
0.67 321.80 0.79 650.98 0.90 325628 1.72 328.09 1.83 660.78 1.63 319512 2.83 1.92 1.48 -1.91

1.00 617.74 3.30 1407.72 3.71 1058336 4.74 622.71 2.20 1414.03 2.47 1006814 2.86 0.80 0.45 -5.12
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Simulation Modeling Summary (to date)

Eco-approach and departure is less effective with
increased congestion

In general, 5%- 10% fuel savings can be achieved with
100% penetration rate

Smaller penetration rate of technology still has a
positive network effect (non-equipped vehicles also
have a slight benefit)

Eco-approach and departure technology only provides
a slight improvement (1% - 3%) to mainline flow in a
coordinated traffic corridor
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Contact Information

Eco-Approach and Departure at Signalized Intersection:
 Matthew Barth, UC-Riverside, barth@cert.ucr.edu

AERIS Program:

* Marcia Pincus, Program Manager, Environment (AERIS) and ITS
Evaluation, US DOT RITA, marcia.pincus@dot.gov
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AERIS ConOps and Modeling Workshop

Purpose:

o Validate the content of three (3) Draft Concept of Operations documents:
= Eco-Signal Operations
= Dynamic Low Emissions Zones
= Dynamic Eco-Lanes

o Begin detailed discussions on the plans for modeling and analysis of the AERIS
Transformative Concepts.

When:
o March 26th and 27th, 2013

Location:

o Hyatt Regency Washington on Capitol Hill
400 New Jersey Ave NW
Washington, DC 20001

Registration:

o Persons planning to attend any part of the workshop or participate in the webcast
should register online at www.itsa.org/aeris2013.
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