
Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 1 of 19

Ken Leonard: ITS Standards can make your life easier. Your procurements will go more
smoothly and you’ll encourage competition, but only if you know how to write them into your
specifications and test them. This module is one in a series that covers practical applications for
acquiring and testing standards-based ITS systems.

I am Ken Leonard, director of the ITS Joint Program Office for USDOT, and I want to welcome
you to our newly-redesigned ITS standards training program of which this module is a part. We
are pleased to be working with our partner, the Institute of Transportation Engineers, to deliver
this new approach to training that combines web-based modules with instructor interaction to
bring the latest in ITS learning to busy professionals like yourself.

This combined approach allows interested professionals to schedule training at your
convenience, without the need to travel. After you complete this training, we hope that you will
tell colleagues and customers about the latest ITS standards and encourage them to take
advantage of the archived version of the webinars.

ITS Standards training is one of the first offerings of our updated Professional Capacity Training
Program. Through the PCB program we prepare professionals to adopt proven and emerging
ITS technologies that will make surface transportation safer, smarter, and greener, which
improves livability for us all. You can find information on additional modules and training
programs on our website, www.pcb.its.dot.gov.

Please help us make even more improvements to our training modules through the evaluation
process. We look forward to hearing your comments. Thank you again for participating and we
hope you find this module helpful.

Ken Vaughn: Hi, this is Ken Vaughn. We’re here today to talk a little bit about some of the ITS
training courses that are provided through the Professional Capacity Building system by the
USDOT. The complete list of courses is provided at the bottom website you see there,
www.pcb.its.dot.gov. This course is focused on Module A315b, Part 1. The Specifying
Requirements for Actuated Traffic Signal Controllers Based on NTCIP 1202 v03 Standard. This
is part one of a two-part course, and it’s been updated last in June of 2020. I’ll be your instructor
today. My name is Ken Vaughn, President of Trevilon LLC. I have quite a few years’ experience
with NTCIP, traffic signal controllers, ITS standards in general, including with testing,
architecture, and standards development, and deployment.

The Learning Objectives we have today are identifying NTCIP 1202 v03 standard requirements
then we’ll talk a little about the purpose and benefits of the Requirements Traceability Matrix or
what we call the RTM, and we’ll consider how you prepare a Project-Level RTM and what needs
to go in there. And we will conclude our session today with preparing an ASC Specification or at
least discussing steps to prepare an ASC Specification. And then, as I mentioned, this is part
one of a two-part course, and there will be additional topics in that second part.

That brings us to our first Learning Objective, which is identifying the NTCIP 1202 v03 Standard
Requirements. Our key points within this learning objective are to understand the scope of
NTCIP 1202 v03, identifying and understanding what a requirement really is, and then reviewing

http://www.pcb.its.dot.gov/

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 2 of 19

the outline of the standard and then considering the format that the requirements are presented
in. Let’s take a look at the scope of this particular standard. In the top middle of this page you
see our actuated signal controller, and then it has connections to three different pieces of
equipment with red lines. Those red lines symbolize the scope of this particular standard. All
three of those lines are addressed by this standard.

The first one, in the upper left, is the Traffic Management Center that connects to the ASC for
managing and controlling that ASC. Likewise, I might want to manage and control my ASC from
a maintenance or technician’s laptop out in the field. That link is also part of the standard. The
third aspect of the coverage of the standard is new to v03, and it’s the connection between the
ASC and a Connected Vehicle Roadside Unit. Connected vehicles are a new extension of the
architecture and this new version of the standard includes the finding—how a signal controller
connects to an RSU so that we can enable connected vehicle communications.

What’s not covered by this standard but generally are covered by other standards in the industry
are how the ASC interfaces with the Signal Controller Cabinet itself and all of the components of
that cabinet. And then how that Signal Cabinet connects to the actual roadside equipment you
might see, such as your signal heads both for vehicles and pedestrians and detectors, once
again both for pedestrians and vehicles.

Also not within the scope of the 1203 standard—but certainly directly related considering how
the whole system works—is what the RSU is connected to. That RSU controller is connected to
a short range wireless radio. That radio then communicates wirelessly to a range of different
local road users, including generalized vehicles, specialized vehicles that might have special
permissions, as well as pedestrians and other vulnerable road users. But discussion of this
course will focus on those lengths that are focused with the ASC, mainly the ones with a Traffic
Management Center, maintenance laptop, and the Connected Vehicle Roadside Unit or the
RSU.

There have been quite a few changes within the v03 standard. One of the biggest changes is
the fact that we’ve added systems engineering content. So whereas the v02 standard and v01
standards both contained the data definitions and some of the core technical details of how to
implement NTCIP, this standard actually provides a lot of the backup material. We now have
user needs that explain why you might want to use different features, and then those user
needs are traced to requirements. Requirements giving you very precise definitions of what is
provided, what is the intent in order to meet those user needs? And then the dialogs are also
defined. So no longer do we just provide the individual data elements, but we define exactly how
they’re supposed to be used. This all is designed to increase the interoperability of devices. So
when you buy a device from one manufacturer, it’s more likely to work off the shelf with a device
from another manufacturer.

We’ve also added support for some new user needs. I mentioned before in the previous slide,
we’ve added the connection to the RSU, thereby enabling a connected vehicle environment.
We’ve also added a couple of other features. We’ve added the ability to manage operational
performance by monitoring at a very detailed level the operations of the controller, and then
have also provided a way to support exception reporting. So rather than always having to pull
your device, you can now configure your device to report back when special conditions occur.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 3 of 19

There’s also been a few other minor improvements but those are the main three big
improvements, the user needs. We’ve also enhanced some capabilities for existing user needs
by tweaking and adding some additional options. Also have done some general maintenance of
things that have been identified with the standard. A complete list of all changes is available in
Annex D of the document and that’s true with all of the NTCIP standard series. Annex D is
where you’ll find the list of improvements from version to version.

Now that we understand a little bit about the scope and what’s new in NTCIP 1202 v03, let’s
consider what are these requirements that we’ve added? How are they different than what
we’ve discussed before? So let’s consider what a requirement really is. INCOSE defines a
requirement as “a statement that identifies a system, product, or process characteristic or
constraint, which is unambiguous, clear, unique, consistent, standalone (not grouped), and
verifiable, and is deemed necessary for stakeholder acceptability.” So the key to understanding
this perhaps not fully clear definition is the fact that you can group these three terms: system,
product, and process as a single unit that describe the type of characteristic or constraint. So it’s
a system characteristic constraint or a product characteristic constraint or a process
characteristic or constraint. And it’s describing something that’s unambiguous, clear, unique,
standalone, etc., etc.

But when we talk about a characteristic or constraint, what do we really mean within our
context? Within NTCIP, we’re mainly talking about functional requirements, design
requirements, and traceability requirements. There are many other types of requirements that
we could go into, but these are the three areas that we focus on within NTCIP. We’re not
concerned about, say, the physical requirements of the unit or the electrical requirements,
whether it operates on American-style power or European-style power or something else. We’re
concerned about functional design and traceability within the scope of NTCIP standards.

So now that we understand that we have these three different types of requirements, how do
those requirements get relayed in the body of the standard? We’ve traced this map—we’ve
mapped this out, color coded-wise, within the outline of the body of the standard. So the gray
text indicates other tech that’s not actually a requirement but is relevant to the discussion. The
green text, in the case of the functional requirements, these define what we are trying to do. The
design requirements, then, are in blue and identify how we achieve these functional capabilities.
And then finally the orange is what ties it all together, and the orange ties the—for example, the
user needs to functional requirements, as well as the functional requirements into the design
requirements.

So if we look at the outline now, you see the first two sections are in gray. They are other text.
They’re not actually requirements, but they’re very important. General section provides
normative references, definitions, things like this, and Section 2 provides a concept of
operations. That Concept of Operations includes your user needs formally defined, i.e., it lifts
out specific features that users may want to achieve with their signal controller, and then those
are all later traced to functional requirements. So it’s a guide of how you select your features.

Section 3 provides those functional requirements as well as a Protocol Requirements List, or
what we call the PRL, that ties the user needs defined in Section 2 to the functional
requirements defined in Section 3. Sections 4, 5, 6, and 7 then provide the design details.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 4 of 19

Section 4 is the dialogs about how the two components talk to each other and the sequence of
the messages that are exchanged.

Section 5, 6, and 7 define different types of objects. Section 5 are the standard base objects
used to control the signal controller. Section 6 defines what we call block objects. These are
used for data upload and download when you’re trying to exchange large portions of your
database. It just provides more efficient operations. And then, finally, Section 7 deals with
objects that we have coordinated with SAE on in order to support the connected vehicle
environment. So a lot of those definitions, rather than reinventing the wheel, we imported from
SAE. Those are contained in Section 7.

Annex A, then, is the Requirements Traceability Matrix, also known as the RTM. This RTM
traces from the functional requirements to the design elements. So whereas the PRL traced
from the user needs to functional requirements, the RTM traces from the functional
requirements to the design elements being the objects and the dialogs. Annex B is an Object
Tree. That’s informational, describing how all of the different objects or data definitions fit
together.

So Annex C describes the test procedures. Normally this is true for all NTCIP 1200 series
documents. However, within NTCIP 1202 v03, this is a placeholder. We don’t currently have test
procedures defined for NTCIP 1202. There is a project that’s looking at developing some test
procedures, but they’re not yet developed, so this is a future placeholder for test procedures in a
future version of NTCIP 1202.

Annex D describes documents—is a documentation of revisions in this standard, and then
Annex E describes other user requests that were not actually included in this version of the
standard, so features that users may have requested. We explain why they weren’t included.
Sometimes it may be for a future version. In other cases, maybe we decided that they weren’t
really needed due to other ways of doing things.

Then Annex F, G, H, and I are, once again, requirement sections. Annex F provides some base
function requirements. They are very generic and apply to all of the data exchanges. Annex G
provides some generic dialogs describing how generic SNMP interfaces work. Annex H is a set
of functional requirements that are generalized, that really almost belong in NTCIP 1201 or
1103. They may be moved there at some future date, but, in the meantime, we have formal
definitions within this document.

There are also some dialogs contained in that section. And then Annex I includes some more
details about communication ports and the protocols related to those. So that’s the full outline of
the standard. As you see, the functional and design requirements are scattered about. The key
is understanding those traceability tables. They allow you to quickly identify where the
requirements are located. You can trace it through the document very easily that way.

So how does this all work? We mentioned two different traceability tables, and if we use that
same color-coding we had on the previous slides, you see that on the left, we have user needs.
Those user needs are traced to functional requirements using the PRL, the Protocol
Requirements List. That’s the traceability that ties those two together. Those functional

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 5 of 19

requirements are then fully described when you trace through the Requirements Traceability
Matrix to the dialogs and the objects.

So let’s take a little bit closer look at that with some examples. The PRL organizes functional
requirements by user need. So it takes you down to a logical path of how must users would kind
of see the different features that I want for my traffic signal controller. One of the challenges we
have is, when you actually go to implement a user need, and detailing what you actually want
with this particular need, you often start realizing that the same requirement is needed by
different user needs. So if I want to manage my timing pattern scheduler or log user access, I
have a need to be able to configure the time, because if I want to schedule something, I need a
clock, and if I want to log something I need to timestamp that, which means I also need a clock.

So we have these common sets of requirements that relate to different user needs. So people
sometimes ask, “Why don’t we just define our requirements directly underneath the user need?”
Well, if we did that, we’d have to redefine the same requirement over and over again. So
instead we break those out into different sections, and then we provide this traceability table that
shows how the needs trace to requirements, then, likewise, if you need to, you can identify
requirements and trace back to the needs that are traced to them. So that avoids us from having
to write duplicate requirements. We know what the requirements are. We write it once. It
increases maintainability of the standard.

So we talked about the user needs being arranged logically through the way a user would use
them, while the requirements, they come much more muddled, so we’ve organized these
separately. We have architectural requirements where we talk about basic communications,
logging data, exception reporting, and accessing the device. And then we have data exchange
and operational environment requirements. There we talk about the basic configuration of your
controller, managing signal operations, detector management, connected vehicle management,
and backwards compatibility.

We then have Section 3.6 that provides supplemental requirements that are non-
communications-related, or are at least non-data exchange-related. So here we get into things
like response times, condition-based transmission start times, signal phase, and timing
performance, things like this. So a lot of performance characteristics and other things that aren’t
directly related to requiring a data exchange itself, but other related requirements.

Annex H, then, deals with more generalized requirements that apply to many different devices.
So we talk about general configuration, generic status monitoring, data retrieval, control, and
performance. That’s all how you go from a user need to a requirement, but once you’ve
identified a requirement, how do you get to the design details? Well, as we mentioned, that’s
through the RTM, the Requirements Traceability Matrix. Each functional requirement involving a
data exchange traces to at least—well, exactly one dialog—and at least one and typically more
objects.

So if we see the diagram at the bottom here, we have a couple of examples of functional
requirements in green. They’re connected by the RTM on both sides in this case, in this figure.
To the left, we have them connecting to a dialog. And, in this case and many cases, we use
what are called these generic dialogs. This particular one is a generic configure table row so

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 6 of 19

typically when we’re interfacing with tables we have a very small set of dialogs that we just keep
on reusing because the process is the same. On the right side, you see the specific objects
we’re dealing with for this particular requirement. And actually we have two different
requirements here, and we discover they’re traced to exactly the same two objects, which
shows you, once again, we can have one or multiple requirements all tracing to the same
object. Likewise, the same object can trace to multiple objects. So it’s a many-to-many
relationship on that side.

Let’s take a look at how that works. We have—the dialogs are defined in Annex H.2, which is
where generic dialogs are, which is the one we just referenced. There’s also some more
customized dialogs specifically for signal controllers in Section 4. The data elements or the
individual objects that we talked about, are, as we mentioned, defined in Section 5, 6, and 7, as
well as in other standards. So the traceability table not only traces to elements contained within
the standard, but also elements contained in other standards with specific cause references.
And those other standards include NTCIP 1201, NTCIP 1103, as well as some other RFCs
developed by the Internet Engineering Passports.

Now that we understand kind of the base level of how everything connects together, let’s take a
look at how we actually write and put these functional requirements into the standard. We try to
use the same basic construct for all of our statements so that we make them as unambiguous
as possible. It comes with a structure where we have a localization, actor or action target,
followed by constraint where the localization of constraint are both optional fields in that
statement. The actor is obviously the person or thing that has a responsibility, that does the
action. The action is simply what is to happen. And then the target identifies what is to receive
or the object of the action. The two terms you may be less familiar with: localization identifies
the circumstances under which a requirement implies and the constraint identifies how to
measure success or failure.

Let’s take a look at this in practice. We go back to the example we had in our previous slide,
though we’ll figure—configure vehicle phase minimum green time—and we look at the
requirement as stated in the standard for that requirement. It says, “Upon request from a
management station.” That’s in green, that’s localization. Under what conditions does this
requirement apply? The ASC, then, is the actor. When there’s a request from a management
station, the ASC, the actor, shall do what? It shall store information. So “it shall store” is the
action, and then the information, the target, is the minimum amount of time the green indication
is to be displayed for a phase.

So those are the three core components. The ASC is the actor. “Shall store” is the action, and
the minimum of time the green indication should be displayed for a phase is target. Finally, we
have the constraint. The constraint is that this will be recorded in seconds between 0 and 255
seconds. So a very precise definition conforming to our structure.

When we trace that functional requirement to an object, we have a similar sort of statement
defined in that object definition. Once again, this is taken directly from the standard. So we’re
now in a section of the text that is designed to be computer-readable. So we can understand it,
but the reason it’s in this strange format is because we also need to be able to send it to a

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 7 of 19

computer and have the computer understand it. So all of the spaces and line breaks and all of
that are significant within this environment.

So the phaseMinimumGreen is the name of the object. It starts out with just an object-type. The
syntax, the way it’s presented, is an integer from 0 to 255. The access indicates that you can
either read this information, retrieve it, or you can set it for a right operation. The status largely is
kind of an archaic reference, but is required in the computer format. We defined our mandatory
and optional capabilities elsewhere in the RTM and the PRL, as we discussed, but this field is
required by the structure.

The key aspect here, though, is the description, which includes the definition,
phaseMinimumGreen parameter in seconds, and here we see that this definition actually is
derived from a NEMA TS 2 definition. We then have—down at the bottom, we see that this is
units as recorded in seconds, and the references from TS 2 with specific clause references. The
other fields there are the object identifier of 1.3.6, etc., and the phaseEntry at the very bottom.
Those are how the computer sees this name of the—how it exchanges that name. So rather
than saying “phaseMinimumGreen,” it identifies it through a long computer code as you see
there.

That’s what the object looks like. Now what does the dialog look like? So this is one sample
dialog. It is the one we referenced before, H.2.7. It starts out with a statement, “standardized
dialog from management station to configure a table row shall be as follows:” (a) as a
precondition, “the management station shall be aware of which row in the table is to be
configured,” and (b) “for the specified row, the management station shall SET all objects (to their
desired values)” and all objects “referenced by the specific dialog that references this generic
dialog, except for the index object(s).” Kind of a long statement. What exactly does that mean?

Well, if we break it down, we see that Precondition A: a “management station shall be aware of
which row in the table is to be configured.” Well, we’re looking for the index of that row. So
typical controller, we might have eight phases. We might be currently interested in Phase 2. We
want to configure the table row for Phase 2, so in our example we look at the bottom right. We
see our traceability. Our requirement traces to phaseNumber. That’s the row index of the table.
In this case, we want—our example is for Phase 2. And you see that Phase 2 in the bold
diagram down to the lower left as the phaseMinimumGreen.2. That .2 represents the index of
the row we’re dealing with. We go to Step B. We see that we’re going to—that’s all objects
referenced by the specific dialog, and we have two objects here: a phaseNumber and a
phaseMinimumGreen. So all objects referenced by the dialog that reference its generic dialog,
except for the index objects.

And remember, we just said that the phaseNumber is an index object. So we’re not going to set
phaseNumber. That’s our reference, our index point. So now we’re only left with one object,
phaseMinimumGreen, so that’s our reference to object. So the command in our diagram is that
we set phaseMinimumGreen.2. And what value do we set that to? Well, we set it to the desired
value. In this case, we’re going to say it’s four seconds. So that’s the meaning of that dialog and
how that works.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 8 of 19

Well, that concludes Learning Objective One. And that brings us to our first question. Which of
the following is missing from NTCIP 1202 v03? Your answer choices are: (a) user needs; (b)
functional requirements; (c) test procedures; or (d) all of the above. So go ahead and make your
choices, and we’ll then take a look at responses.

Well, the correct answer is test procedures. We mentioned that, while the NTCIP 1202 v03
includes an Annex C, which will eventually contain test procedures, it’s currently empty and left
for future work. User needs is incorrect, v02—or, sorry, v02 did not have user needs. That
would have been correct, but this course is on NTCIP 1202 v03, and we’ve added user needs
as a part of this. Version 03 also added the functional requirements, so those are both now
contained in the standard. And, of course, if (a) and (b) are not true, then “all of the above”
would also not be true.

Well, that brings us to Learning Objective Two: Explaining the Purpose and Benefits of the
RTM. The two key points in this learning objective are understanding the interoperability and
interchangeability, and then, once we understand what those terms mean, we’ll start looking at
how we obtain interoperability and interchangeability.

So what do these terms precisely mean? Interoperability, as defined by ISO/IEC, is the “degree
to which two or more systems, products or components”—so you kind of see that coupling, the
three-part coupling there—“systems, products, or components can exchange information and
use the information that has been exchanged.” So clearly ISO/IEC worked with INCOCE. They
liked this three-part of systems, products, or components. It probably makes incidents easier to
read if we only talk about one of those at a time, so the degree to which two or more
components can exchange their information and use the information that has been exchanged.

So pretty straightforward, but there’s two key elements of this feature. One is the exchange of
information; the second is being able to use the information once it’s been exchanged. So how
does NTCIP accomplish this? Well, that exchanging of information is that dialog. It is the
definition of how we exchange that information, and we do that through the dialogs coupled with
the specific protocols that we use and the definition of those protocols.

Using the information that has been exchanged, that gets into making sure that we have fully
and unambiguously defined every data element so that people accessing that data through the
protocols are able to know how to use that information and know what it means. So that’s
different use cases, but those different use cases can all reference the same data elements.
Our goal is to standardize that data element. So between these two components, we’ve fully
defined how we can achieve interoperability for the features we’ve defined.

Well, that brings us to interchangeability. Here we see that interchangeability is the ability of one
product, process, or service—once again, a triple of ideas complicating the sentence—“ability of
one product, process, or service to be used in place of another to fulfill the same requirements.”
So we’re just switching out one for the other, but a key aspect here is we talk about “the same
requirements.” Well, what requirements are we dealing with? Well, once again, obviously we’re
talking about NTCIP, so we’re not talking about every possible requirement. We’re talking about
interchangeability within the scope of NTCIP. And that primarily is with functional requirements
that we deal with and also with performance requirements.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 9 of 19

Within NTCIP, we’re not generally interested in electrical, environmental, structural, and other
types of requirements. We don’t care about the color of the controller, for example. But there are
other things that you may care about when you’re actually exchanging equipment. Is the
controller going to fit into my cabinet? Does it accept the same power that I have at that
cabinet? Those are not part of NTCIP, but might be very important for you when you actually go
to interchange your equipment.

So now we look at the rules within data exchanges. Interoperability entails two system
components exchanging information. NTCIP defines two specific roles in every information
exchange. A manager, which is responsible for making a request and also receiving the
responses and notifications, and an agent, who is responsible for responding to requests as well
as generating unsolicited notifications. So typically the example is that your manager is your
traffic management system that you see here on the left, and your agent is your traffic signal
controller over on the right. That is a very typical arrangement of the manager to the agent. But
it’s not always that simple.

In the case of an RSU, it would work essentially the same way. The manager would be the
traffic management system, whereas the agent would be the RSU. And, of course, we have the
traffic management system also acting as a manager to the ASC acting as an agent. But, as we
talked about before, that signal controller can also talk directly to the RSU. We had that within
our scope picture of the standard. So in that environment, which one is the manager and which
one is the agent? Because, remember, when they’re talking to central they’re both agents. But
now, in order to talk to each other, one of them has to be a manager. The other one has to be
an agent. And the fact is: the standard, NTCIP 1202, doesn’t define which is which. It is up to
you to decide for your project which one you want to operate as a manager, which one you want
to operate as an agent. That decision does impact the requirements for your device. It does
impact the capabilities of that device, how it’s going to interoperate. It has to be one or the other
for that particular link. That means it has—whichever the manager is, you’re adding functionality
to that box. So the question then becomes: which of those two boxes do you want to add that
functionality to? NTCIP supports either design. It’s up to you on your project.

So that brings us to NTCIP interchangeability. And if we combine the two definitions here, that
we actually want NTCIP interchangeability for the purposes of interoperability. We combine
those two statements in green and in blue, and we see that we have a degree to which one
product can be used in the place of another to exchange information and use the information
that has been exchanged. So that’s what we really mean when we talk about NTCIP
interchangeability and interoperability. Now it’s very important to note here: we use the “degree
to which” nomenclature at the start of this definition. That’s because we’re still not precise. You
can have different levels of NTCIP interchangeability, but what you need on your project is to
know whether it will work or not. So what information needs to be exchanged on your project?
That’s what you need to decide, because within NTCIP, many of the elements are optional, and
that creates different levels of interchangeability. So for NTCIP as a whole, products have a
degree of interchangeability, but on your project, you need to determine: is it interchangeable or
not?

That brings us to the project-level NTCIP interchangeability. This is where we say it’s the ability
of one product to be used in the place of another, to exchange and use the information. Which

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 10 of 19

information? It’s the information required for a specific project. This means I have to identify
what information I need on my specific project to determine whether or not a particular device
will be project-level NTCIP interchangeable. So it’s that project-level PRL that will identify the
options you have for your project. We discussed how to do that as a part of the A315a module.
And then the RTM traces those user needs and functional requirements to a detailed design. So
once you identified that project-level PRL, you know you’ll get something that’s interoperable
and, at that point, interchangeable.

Well, that actually raises two other terms that we need to consider, as well. Informants—
conformance is “adherence of and implementation to the requirements of one or more specific
standards or technical specifications.” Now don’t get confused by the word “technical
specification” here. This really relates to a standard. Technical specification within the terms of
ISO is a particular type of standard document, although, within ISO, you have true international
standards. They’re called international standards, and they get a number. You also have
technical specifications that are kind of like preliminary standards. They’re for experimental use.
They plan to become international standards at some point, but right now they’re still kind of
being tested out. So “technical specification” within ISO terminology is a particular type of
preliminary standard. So when you read the concept of “conformance,” you’re really talking
about: it relates to a standard or similar standard document.

By comparison, we have the term “compliance.” And compliance is simply “doing what has been
asked or ordered as required by rule or law.” That’s per IEEE. It’s not limited to standards, but
can include things like project specifications, which you may think is being very technical, but in
ISO terms they’re not technical specifications. They’re project specifications. So you’re
compliant to a project specification. You’re conformant to a standard.

So pulling all of this together, we have various types of PRLs. The standard PRL that is the PRL
that is contained in the NTCIP 1202 document. It provides what I call a baseline menu. It gives
you various options you can pull out and select for your particular project. It also defines which
items are absolutely mandatory if you want to claim conformance to the standard itself, right?
So that’s conformance. Your project PRL is looking at that baseline menu and actually making
the selections. Which of these optional features do I want on my project? And then that defines
what constitutes compliance for your particular project.

Finally, there is a product PRL. This is where a manufacturer might go through that same
baseline menu and identify which features their product actually supports, and then that defines
the capabilities of that project. The nice thing about this is, at the end of the day, you can take a
project PRL, compare it to a product PRL, and see whether or not that product will meet the
requirements for your project. So you can very quickly identify what capabilities are there and
what differences exist, the goal being: as long as that product meets or exceeds your
expectations in your project, then it meets the requirements.

So this is what that PRL looks like. We’ve gone through here and made some selections from
the menu column. The support column. And, once again, equipment may meet or exceed that
level of conformance, so it could very easily support both of these options. A product could very
easily support both those options at the bottom and still meet your project requirements.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 11 of 19

So the PRL defines the what, and the PRL defines kind of the baseline, the foundation for
interchangeability. But we’ve not defined the details of how it works yet, so you don’t yet have
interchangeability. But it provides the platform. It says what I need to do at a minimum. It’s the
functional and performance requirements as well as the user needs.

The RTM is that second traceability table, and that’s where we get into how we achieve
interoperability. It’s the design details for each element. So the PRL provides the foundation for
interchangeability. The RTM extends that definition to ensure interoperability once the devices
have been interchanged.

So there’s another distinction between these two terms, of course, though, and that is products
that comply with the same project specification are interoperable if they fulfill opposite roles. So
one’s a manager, and one is an agent. They’re interoperable. If they fulfill the same role, if
they’re both agents, those devices are interchangeable. Likewise, I can have two different
interchangeable managers TMC-wise, or in my maintenance laptop. Those are interchangeable.
They fulfill the same roles. So the project specification—we actually go out with your
procurement. You need to include your project PRL that is the filled-out standardized PRL from
the standard and any supplemental PRL.

So if you have user needs and requirements beyond those defined in the standard PRL, you
need to make sure you include those, as well. And then likewise you need a project RTM. Now
we say it’s a project RTM. In fact, to the extent that you’re constraining yourself to just the
standard off-the-shelf components, then you can use just the standard RTM.

There’s only one trace that occurs for every data exchange to the RTM, therefore you don’t
need any customization. But you may actually want to include a supplemental RTM, both to
handle any supplemental requirements or user needs you’ve defined, as well as details you may
need to specify for your particular project. And we’ll get into those later. And then, of course,
there’s additional materials that we’ll discuss at the end of the session today.

But that brings us to the end of Learning Objective Number Two, and it brings us to our second
question of the day. What does a project PRL identify?: (a) the functional requirements for a
project; (b) the objects to be supported for a project; (c) the testing requirements for a project; or
(d) all of the above. So go ahead and make your choices. What does a project PRL identify?

All right. We’ll take a look at the answers here. And we discover that the correct answer is: (a) a
project PRL identifies which functional requirements are required for a device within a project.
The objects to be supported for a project are identified in the RTM. That’s the other traceability
table. The testing requirements for a project are not a part of the PRL. They’re not a part of the
RTM. There is a Test Traceability Table that will be included in Annex C. That’s not currently
included within the v03 of NTCIP 1202. And, of course, if two of the statements are wrong, they
can’t all be true, so item (d) is incorrect, as well.

That brings us to Learning Objective Three: Preparing a Project-Level RTM. Now, I gave you a
hint at the end of the last learning objective that, if you’re doing everything in a standardized
fashion, you don’t need any specific project-level RTM. You just use a standardized one. But
we’ll go through here a little bit further to understand the RTM trace requirements within the

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 12 of 19

RTM and then supplementing the RTM if needed, referencing the RTM, and understanding the
RTM benefits to stakeholders.

So the PRL needs to be tailored for each project by selecting options. Okay, remember this is
the PRL, the first traceability table that goes from user needs to requirements. We’ve defined
how to do that already in module A315a. And then the next module, A315b Part 2, will discuss
some other special considerations for how you actually fill that out and other things you have to
consider. The RTM, the second traceability table, provides exactly one design for each
functional requirement that includes a data exchange. So there’s no options to select in the
RTM. There’s no need to duplicate this in a procurement and, in fact, the copyright statements
related to the RTM really prevent what changes even could be made if you want to maintain
within that agreement. So if you add this to your project specifications rather than just
referencing it, you end up massively increasing the size of your specification while really only
confusing the vendors because they’re going to be looking at this saying, “Well, I think this is the
same thing that’s in the standard.” But if you included it here, now I have to look at every single
page and make sure you didn’t change anything inappropriately. So really the goal here should
be to simply reference the standard. That makes life easier on everyone. And all
implementations must support the design and the standard to claim support for the associated
requirements.

So what does this RTM look like? Well, you’ll see we use shading. Shaded rows indicate that
they’re headings, not actual functional requirements themselves, but they’re section headers.
So when we get down to an actual functional requirement, you’ll often see that there’s multiple
levels of shading above it showing different levels of section headings. But once we get down to
a specific functional requirement, you’ll see that the first three columns, or the first two columns,
identify the section number where that requirement is defined and the name of that section
heading, so for that specific functional requirement.

So the functional requirement, in this case, is: configure vehicle phase minimum green time,
same example we’ve used before. You see the clause number in the document over there on
the left, and we see also the dialog ID indicates which dialog this traces to. When you get to
empty rows and that functional ID and functional requirement and dialog ID area, that’s
indicating that we’re actually going to start tracing from the functional requirement to more
detailed elements and the objects area. So, in this case, we have one functional requirement.
Remember we said every functional requirement traces to exactly one dialog. That dialog, in
this case, is H.2.7, and then it can trace to one or more objects.

Typically it’s more than one object, but here we see the three objects this time: phaseTable,
phaseNumber, and phaseMinimumGreen. The phaseTable actually is the table as a whole. It’s
just kind of a generic reference. So it’s not really an object per se, but we’ve listed it out in the
table to give you context. So how does this really work? The last three columns, then—so same
as before. The object ID is the section number where you can find that object defined in the
document. The name of the specific object and then any additional specifications—in this case,
we don’t have anything in the additional specifications column. We do have an example coming
up to show how that’s used.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 13 of 19

But first, let’s take a look at how this relates to a previous example we’ve discussed before. That
H.2.7 dialog is the same exact dialog that we’ve presented before. It’s basically just a set of the
object that we’re dealing with to a particular value. Our traces over the object area, the
phaseTable, points to the table as a whole. It gives you a context of what we’re dealing with.
The phaseNumber, as we talked about, is the index, so that’s just pointing me to a specific row
in that table. And then, finally, the phaseMinimumGreen is pointing to a column. And that
column is one column of that phase table. So by knowing the row and the column, I know of a
specific cell in the table, and that cell contains the value that I want to set things to or retrieve
data from or whatever. So that’s how everything works. Everything traces very nicely together to
form a complete solution.

Now we also talked about—there’s an additional specifications column. There are some cases
where a particular object is not an indivisible component, but is, in fact, like a bitmap or some
other arrangement where it actually contains multiple sub-pieces of information. So there’s
cases where we have functional requirements. In this case, where we want to enable or disable
a phase, and that functional operation only addresses one bit out of the phaseOptions object.
So that “additional specifications” is where we provide that supplemental information that we’re
dealing with a specific bit—Bit 0 in this case—of the larger phaseOptions object.

So, so far we’ve talked about the same dialog over and over again. That’s a very simple dialog. I
want to set information. Very straightforward. But dialogs can be complex. Dialogs—I might
need to set the device in a particular state before I conduct my actions, and then after I finish up
all of my downloading of information, I might need to reset the state of the controller and make
sure everything works. Be prepared to get error responses and other things. So the dialogs can
be deep interactions with a device or they might be very simple interactions. And there are
cases—the most common cases are simple interactions, but the more customized cases are
why we have a dedicated Section 4, to identify how more complex operations work.

Now, in all of these cases, when we trace to a dialog in the standard, we’re tracing to a
standardized dialog. That sounds circular, but what we’re getting at is: these are the ways that
we intend the operation to work and that we will end up developing test procedures to ensure
that they work. But SNMP, the base protocol that we use to exchange all information, is a very
flexible sort of protocol. It allows a manager to pick and choose what data they want to retrieve
or store in the device whenever they want to. The base logic of SNMP allows a manager to
combine these data elements largely in whatever combination they wish to.

We define standardized dialogs that trace very nicely to our standardized set of requirements so
that we can test against those requirements in a logical fashion that supports all deployments.
But when you get to actual operations, your live operation Traffic Management Center might
frequently poll your device. And rather than abiding it precisely with the standardized dialogs,
they might optimize their operations so they use fewer communications bandwidth than would
otherwise be required.

And by doing that, they’re changing the way that information is exchanged. In theory, they’re
fully conformant. They’re fully compliant with all of the SNMP rules. They’re conformant with the
standards. But they’re using a different set of dialogs, and you can’t be one hundred percent
certain this is going to work unless you test against those dialogs. And that’s what this really

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 14 of 19

drives down to is, if they’re going to vary from the standardized dialogs, you might want to start
considering testing to the specific dialogs that they use in their system so that before you
actually purchase a device you know it will work in your system.

So project dialogs allow an implementation to support specialized dialogs for better efficiency,
better operations of the system as a whole. This is particularly true when central systems need
to frequently monitor information from multiple functional requirements. The standardized
dialogs often, within the standard, are not the most efficient way to exchange that data. NTCIP
provides multiple ways to improve this efficiency. You can have flexibility of the SNMP request.
You can change the order of which objects I have. I can combine requests together. All sorts of
things.

We’d also—we talked about block objects. I can create blocks of data to exchange them more
efficiently. We also have another protocol called STMP that uses dynamic objects. This is a kind
of a whole new level of efficiency capabilities, but also a lot more complex. And then, finally, we
have exception reporting. So rather than actually polling for this information, I can actually
configure my device to give me data at particular times. All of this is allowed by the standards,
but yet aren’t included in what would be produced as standardized dialogs or tested in a normal
procedure. So if you want to do any of these advanced features to improve your operations,
then it’s strongly suggested that you consider having that—defining what those dialogs are and
then testing for them in your test procedures.

In summary, referencing the RTM and your procurement specifications, the RTM is 140 pages.
There’s no need to copy that standardized RTM. All that you need to do is reference it from your
procurement specifications. And, as we mentioned, the NTCIP copyright limitations limit what
you can do to even change that document. It’s a lot better to just reference the document.
Makes it a lot easier on anyone who’s reading your specification to know you mean the actual
standardized RTM. But if you want to define your own specific dialogs, then you do that through
an extension RTM. You supplement that standard RTM with a reference, and now you add your
customizations as a separate supplement.

Why is this all important? Well, because there’s a lot of benefits to having the RTM. The
procuring agency, it simplifies their procurement specification. They just reference this 140-page
document. It reduces the amount of work. That work has already been done. You don’t need to
reinvent the wheel there. It promotes a competitive marketplace because all the manufacturers
are developing according to a standard set of rules. You don’t have to do any custom work for
every new client. And then, finally, it promotes interoperability because everyone has deployed
this before. They’re more likely to interoperate together once they get to your project.

For operations personnel, it also provides detailed design for the desired functionality. That
design has been fully documented. So when they’re trying to debug a system within their
system, they can quickly go to the RTM specification, identify how a particular requirement is to
be met in the design features, go to the exact page that they need to find within that standard,
and identify the details. So it’s all very nicely traced. It promotes a consistent user interface so
that the users and the operators can get used to working with all of their equipment, regardless
of who the manufacturer is, with one standard interface at the central system. It also simplifies
field maintenance, because all of your devices are going to start tending to work the same way.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 15 of 19

System developers also benefit. They promote common design for different manufacturers so
they build an interface once and it uses—works with all the different components they get in. It
simplifies systems integration, because they know what to expect. And it also, once again,
promotes a common marketplace for more advanced systems. So it actually—they spend less
time developing, reinventing the wheel of how you communicate with different manufacturers.
Now they only have to do that once, and they can devote their extra time on building higher,
more advanced logic within their system.

Manufacturers and vendors benefit because they—it promotes a common design for all central
systems. It doesn’t matter who they’re going to integrate with. It enables a standard product for
all of their clients, and simplifies procurement specifications, and, ideally, reduces disputes
because the specifications fall into a standard format. We all understand what that format
means.

Finally, conformance testers also benefit. It clearly identifies what must be supported and its
design. Promotes development of a common set of test procedures. Developing test procedures
are extremely expensive. Implementing them are even more expensive. And this allows us to
develop test procedures once, make them really rock solid, and then even automate a lot of the
processes to implement those test procedures.

That brings us to our third question of the day. What does the dialog column in the following
table mean? So we have a table here that we showed before. The third column in is the dialog
column showing H.2.7. H.2.7. What does that column mean? Answer (a) the dialog is the only
way to exchange the objects; (b) the dialog defines operations that are prohibited; (c) the dialog
provided a baseline reference for testing; or (d) all of the above. So go ahead and make your
answer and then we will review the results.

Well, the correct answer is: (c) the dialog provides a baseline reference for testing. So it does
provide a baseline to be used to develop test procedures. It is not the only way to exchange
objects. We talked about SNMP providing flexibility in the way we exchange objects, and you
may want to supplement your RTM with additional dialogs that correspond more closely to the
way your central system will perform things. “The dialog defines operations that are prohibited”
is also incorrect. It does not define any prohibitions. It only says this is one way in which you can
actually exchange the data. And, of course, if two answers are wrong, “all of the above” would
not be true either.

That brings us to our fourth Learning Objective: Preparing an ASC Specification. The key points
here are identifying potential issues with a specification, going through an interface specification
checklist, and then completing the specification package.

So there are various issues that can arise with poor specifications. So if you don’t specify your
user needs or you have inadequate specifications of functional requirements, you might end up
getting a compliant system but it doesn’t actually meet your user needs. It’s compliant because
it fulfills what you said it had to fulfill, but you weren’t very good in specifying what you needed
to fulfill, so it doesn’t actually meet your needs. Another possibility is: inadequate specification of
system dialogs can result in inconsistent behavior of the system.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 16 of 19

Another possibility is that not clearly defining custom features can lead to inability to support
customized user needs, similar to the first couple of options we listed. Inadequate specification
of communications stack might mean you have a non-interoperable system. So, you know, if I
need an Ethernet stack and, all of a sudden, I’m just given a control that only supports serial
communications, that doesn’t really meet my needs. If I have inadequate testing, I might have
anomalies occur during operations that might cause problems, and that might be problematic to
solve, because a vendor may have already been paid. And then, finally, copying someone
else’s specification might result in a system that doesn’t meet my particular user needs because
I didn’t go through the process of identifying what those were.

So let’s take a look at these and how we resolve them. NTCIP 1202 v03 simplifies the process
for selecting needs and requirements. So this really shouldn’t be a problem. Now that we have a
PRL that’s basically providing you a menu, you can just go down, select the features that you
need on your project. So fill out the project PRL, and include that in your specification, make
sure you include a reference to the RTM that defined how those requirements are actually met
with design details. The one caveat there is to make sure that you don’t over-specify, because
the more requirements you add in, the more expensive the overall project will be.

Then you also need to make sure you define any custom items you might need to include.
Those customizations might include custom dialogs, which we talked about. That’s probably the
most typical case, particularly for signal controllers. But you might also have other custom
extensions. Additional user needs, requirements, as well as associated design. See Modules
A202 and A203, also the follow-on course to this will also give some more guidance, the A315b
Part 2.

Then also the communications stack. We mentioned that this module is focused on the
interoperability of the data, but in order to be fully interoperable, you need that entire
communications stack. You don’t achieve that if one device is Ethernet and another device is
only serial. So you need to identify what standards you want throughout the stack in order to
make your system work. When you define acceptance testing, clearly define it and then follow
through with it. Without testing, requirements are of limited use. You can say that this is
required, but if you never test for it, you have no proof that you’re actually getting that.

With that in mind, testing does require time and needs to be in the budget and scheduled up
front. The test procedures are not currently included in the v03 standard, but, as you’ll find out in
the next module, A315b Part 2, there is a project that’s underway that is going to be developing
test procedures for the standard. So you should be able to access those test procedures and
have something available for your particular project.

So the next one is developing your own specifications. Don’t just blindly copy someone else’s.
We have the PRL. Go through each of those options. Identify what your needs are for your
project and then specify those requirements.

So those are our key checklists: using the project PRL, referencing the standardized RTM, and
then including customized dialogs and extensions in your extended RTM, and then specify your
communication stack, make sure you include testing/acceptance requirements, and don’t just
copy someone else’s specifications.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 17 of 19

But it doesn’t end there. Your interface specification, which is what we’ve really just talked
about, is only one portion of a larger specification package. That specification package needs to
consider the hardware specifications, software specifications, environmental issues and other
things. So what’s important to note here is that all of these things fit together and there’s an
overlap. We need to make sure that, where these different specifications overlap, that we’re
consistent. So if we think about something like the cabinet door, and you want to be able to be
notified when the cabinet door is opened, you have to have all three of these components
working together to solve this problem. I need a hardware-based sensor that can detect a
camera door being opened. I also need the software that will process that signal from that
hardware sensor to make sure that that gets processed and handed to my communications
environment, and then finally, I need an interface so that my field device can report back to
central if a cabinet door is opened.

There’s a tendency for agencies to view this as one document and say, “I have defined that I
need this data in my interface, therefore you should know all of these different components are
needed.” And that makes sense. The problem is this becomes a very large document. This very
large document gets received by a manufacturer who has a large organization and they divide
up that large document saying, “Okay, you interface people, go do this. You hardware people,
go do this. You software people go do this.”

And what has happened on some projects before is it gets divided up just like that. The end
product comes back and you don’t have the hardware there to do what is required by the
interface. And at the end of the project, when everyone spent their budget, and their schedule,
and everything else, and everyone wants to get the project signed off, and you’re missing one
little feature like this, there’s a real tendency for discussions to break down and for the
manufacturer to say, “Well look, we gave you the interface you asked for. You didn’t actually ask
for the hardware. We’ve already delivered it. It’s already on site. We just want our payment
now.” And what you want to do is avoid those complications up front by making sure your
specification is properly documented, properly in sync across all lines. It is a hassle, but it’s a
practical issue that needs to be addressed. Best to address it up front and to get everyone right.
You avoid problems down the road.

So that brings us to our Interface Specification Checklist. A component may need to support
multiple interfaces. So if you’re a signal controller and you’re specifying the signal controller, you
might need your signal controller to support an old version of NTCIP 1202 because that’s what
your current system operates with. Or maybe you need to support proprietary interface because
your system’s that old and you don’t yet support NTCIP 1202. Of course, you also want it to
support the current version because, when I upgrade my system, I want to be able to use the
latest features. And I might also want it to support other NTCIP functionality, especially if I’m
getting an advanced controller.

So, for example, I might have a traffic signal in an area on a hill where it gets icy. And when it
gets icy I want to be able to monitor the icy conditions with a little weather station there, and I
just want to do that in the same controller rather than buying a completely separate weather
station. So I can do that all within one controller, but that means grabbing objects from NTCIP
1204, so I’m having to do all of this in one specification. We need to consider all of that within
your specification package.

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 18 of 19

Likewise, I might need to support multiple communication stacks. I might have one interface for
central. I might have another interface—maybe my central interface is Ethernet. A second
Ethernet interface for my local RSU. And then a third serial interface for my maintenance laptop.
So I need to consider all of my interfaces, make sure that gets into the specification. If I’m
dealing on a central side, I might have to be dealing with multiple device types. I might have a
single central system that’s managing signal controllers, message signs, ramp meters, and
other devices, and each one of those, I might have multiple versions. I might have some older
NTCIP v02 controllers mixed in with my v03 controllers. I need to make sure I can handle all of
those. And, likewise, multiple different communication stacks across my different devices.

The specification also needs to consider contractual requirements throughout the
maintenance—the Vee cycle of operations. The systems engineering Vee cycle. So that
includes the left-hand side. I need to consider contractual requirements on the system
development, what support, what interactions will take place with my developers as they
develop the system? What level of internal testing is required between the two branches of the
Vee? What set of deployment and integration tests will be provided at the end on the right side
of the Vee? And then, as we get up to the top of the Vee, on the right side, what sort of
operational and maintenance support do I expect from the manufacturer? And then, finally,
what’s the overall project management that covers all of this? So you have to consider each
step of your project that’s symbolized through the Vee diagram, the systems engineering.

Finally, we need to remember, you need to complete all aspects of the PRL. In particular, don’t
forget the Additional Specifications column. There are many times blanks that are to be filled out
over there. So the ASC shall support at least (blank)____ phases. Make sure you indicate: is
this an eight-phase controller, a sixteen-phase controller, or whatever? Only require what you
need. The more requirements you add, the more likely you’re going to limit the vendors, and
you’re going to increase costs. The specification needs to insure that the device can respond
fast enough for the central system and efficiently enough for the limited communications
network you might have. And then, finally, your specifications should define acceptance and
payment conditions. So does the vendor get paid on delivery? After testing? After maintenance
for a year? What are the conditions where he gets paid?

That brings us to our final question of the day. Which of the following is typically not part of the
interface specifications: (a) project PRL; (b) testing requirements; (c) environmental
requirements; or (d) communications stack. So go ahead and make your answer then we’ll
review the answers.

So the correct answer is: environmental requirements. They are not typically part of an
environmental specification. The project PRL should be a part of your specification. That is
where you identify the user needs and requirements that you want on your project. The testing
requirements—you will, at least, have requirements for testing and specify what those are. You
won’t necessarily have all of the test procedures defined but you should have the testing
requirements defined. Likewise, we emphasized that there is a need to include the
communications stack in your specification to make sure your two devices can communicate.

So that concludes our presentation. We have—we went through—we identified the standard
requirements in the standard. We looked at the purpose and benefits of the RTM. We also

Module 32
A315b, Part 1 of 2: Understanding Requirements for Actuated Traffic Signal

Controllers (ASC) Based on NTCIP 1202 v03 Standard

Page 19 of 19

prepared a Project-Level RTM which we discovered is primarily just supplementing that
standard version. And then we went through the process of preparing an ASC Specification.

As I mentioned, this is the Part 1 of the course. Part 2 will follow this course, and we’ll focus on
managing some special considerations related to NTCIP 1202 v03, the special considerations
for signal controllers, in general, where we are in the technology life cycle, etc. And then we’ll
also look at incorporating requirements not supported by standardized objects and how that can
be done. If you have any feedback, you can provide it with the link below. Thank you for
participating in this module and we’ll look for you next time. Thanks.

