
U.S. Department of Transportation
Office of the Assistant Secretary for
Research and Technology

Welcome

2

Ken Leonard, Director
ITS Joint Program Office
Ken.Leonard@dot.gov

www.pcb.its.dot.gov

T308:
Acceptance Testing for

Advanced Transportation Controller (ATC)
Application Programming Interface (API)

Software

3

Instructor
Ralph W. Boaz

President
Pillar Consulting, Inc.
San Diego, CA, USA

4

Explain the purpose of the
API Validation Suite (APIVS) Software

Use the API Reference Implementation (APIRI) test
documentation to specify acceptance testing

Use the APIVS Software to
test the API Software

Interpret and report results
of testing API Software

5

Explain the purpose of the
API Validation Suite (APIVS)

Software

6

API Software Testing in the Context of ATC Unit Testing

7

 A transportation controller is a computer

 Traditional controllers run a single application program

 Application Programming Interface (API) Software allows many
application programs to run simultaneously

 Application programs may come from different vendors than the ATC
unit’s manufacturer

 Working, consistent and tested API Software is essential

Quick Review of Advanced Transportation Controllers
(ATCs)

API Software Testing in the Context of ATC Unit Testing

Traditional controller units typically perform a single
application

8

• Traffic Signal Application
OR

• Ramp Meter Application

OR
• Data Collection Application

Traditional Applications

Graphic: Ralph W. Boaz

API Software Testing in the Context of ATC Unit Testing

ATC units can perform numerous applications
simultaneously

9

ATC

ATC

• Traffic Signal Control/Traffic
Management

• Transit/Light Rail Priority
• Emergency Management
• Lane Use
• Red Light Enforcement
• Speed Monitoring/Enforcement
• Access Control
• Advanced Traveler Information Systems

(ATIS)
• Data Collection Systems
• Connected Vehicle (CV) Applications

When using ATC
API Software

Example Applications for ATCs

Graphics: Ralph W. Boaz

API Software Testing in the Context of ATC Unit Testing

Elements of API Software

10

 Made up of three software libraries:
 Front Panel User Interface (FPUI)
 Field I/O (FIO)
 Time of Day (TOD)

 Two resource management programs:
 Front Panel Manager
 Field I/O Manager

 Allows application developers to write
programs that safely share the controller

Graphic: Thinkstock

API Software Testing in the Context of ATC Unit Testing

Example of the Front Panel Manager Window

11

F R O N T P A N E L M A N A G E R V E R 1 . 0 0
S E L E C T W I N D O W : 0 - F S E T D E F A U L T : * , 0 - F
0 R a m p M e t e r P r g r m 1 * S i g n a l P r o g r a m
2 E m e r g e n c y M n g m n t 3 D a t a D i s t r i b u t o r
4 S y s t e m C h e c k e r 5
6 7
8 9

[M O R E - U P / D N A R R O W] [C O N F I G I N F O - N E X T]

Graphic: Ralph W. Boaz

API Software Testing in the Context of ATC Unit Testing

Traditional controller unit testing:

 Tests the controller hardware
(may include the operating system)

 Tests the application program running
on the controller

Unit Testing

12Graphics: Econolite (U), Siemens (LL), McCain (LR)

API Software Testing in the Context of ATC Unit Testing

API Validation Suite (APIVS) Software tests API Software

13

Typical of non-ATC
2070 Units

Typical of non-ATC
2070 & NEMA Units

Typical of ATC units
with API Software

APIVS Software tests
API Software

Graphics: Ralph W. Boaz

Architecture of the APIVS Software

 Four methods of software validation: inspection, demonstration,
analysis, and test

 Must validate that the API Software conforms to ATC 5401 Application
Programming Interface Standard

 API Validation Suite (APIVS) Software is used for testing

 Testing involves initiating a test and comparing the result to a known
correct result

 Must be repeatable

Background

14

Architecture of the APIVS Software

 Computational power of the ATC unit allows internal testing of the
API Software

 Front panel and field I/O devices are emulated

 “Loopback Drivers” cause the API Software’s responses to be routed
back to the APIVS Software

 APIVS Software captures the test results in files and compares them
to known correct results

Testing takes place inside the ATC unit

15

Architecture of the APIVS Software

Recall the layered ATC software architecture

16

HARDWARE
LAYER

Application Software APPLICATION
LAYER

Linux Operating System and Device Drivers
ATC BOARD
SUPPORT
PACKAGE

LAYER

API
SOFTWARE

LAYER
API Software

USERSOperational
User

Graphic: Ralph W. Boaz

Architecture of the APIVS Software

Modified architecture for the APIVS Software

17Graphics: Ralph W. Boaz

API
SOFTWARE

LAYER

HARDWARE
LAYER

ATC BOARD
SUPPORT
PACKAGE

LAYER

Linux Operating System and Device Drivers

API Software

APIVS Loopback Drivers

APPLICATION
LAYERAPI Validation Suite

USERSTester

Architecture of the APIVS Software

Detailed architecture of the APIVS Software

18Graphic: Ralph W. Boaz

Test Scripts
(XML)

Expected
Result Files
(Flat Files)

API
Conformance
Report (XML)

Validation Suite
Engine (VSE)

Front Panel
Manager (FPM)

API Libraries
(FPUI, FIO, TOD)

Field I/O
Manager (FIOM)

Virtual-
LoopbackAsync

Virtual-
LoopbackSync

APPLICATION
LAYER

API
SOFTWARE

LAYER

ATC BOARD
SUPPORT
PACKAGE

LAYER

Features of the APIVS Software

Command-Line Interface (CLI) of the APIVS Software

19

ATC login: root
Password:
#
vse -L 2 -c ./VS_config_1.txt -i C1420_in.xml –o
C1420_log.xml

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 vse – Name of the VSE executable program.

 -L [1-3] – (required) Level of output for the conformance report.

 -c configuration-file – (optional) File that specifies a series of VSE
configurable items. If this file is omitted, default values are used.

 -i APIVSXML-file – (optional) Path to the input XML test script to use.
If –i is not present, the input will be read from stdin.

 -o output-file – (optional) Path of where to place the generated output
XML file. If –o is not present, the output will be placed on stdout.

Features of the APIVS Software

Command-Line Interface (CLI) of the APIVS Software

20

Features of the APIVS Software

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 vse – Name of the VSE executable program.

 -L [1-3] – (required) Level of output for the conformance report.

 -c configuration-file – (optional) File that specifies a series of VSE
configurable items. If this file is omitted, default values are used.

 -i APIVSXML-file – (optional) Path to the input XML test script to use.
If –i is not present, the input will be read from stdin.

 -o output-file – (optional) Path of where to place the generated output
XML file. If –o is not present, the output will be placed on stdout.

Command-Line Interface (CLI) of the APIVS Software

21

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 vse – Name of the VSE executable program.

 -L [1-3] – (required) Level of output for the conformance report.

 -c configuration-file – (optional) File that specifies a series of VSE
configurable items. If this file is omitted, default values are used.

 -i APIVSXML-file – (optional) Path to the input XML test script to use.
If –i is not present, the input will be read from stdin.

 -o output-file – (optional) Path of where to place the generated output
XML file. If –o is not present, the output will be placed on stdout.

Features of the APIVS Software

Command-Line Interface (CLI) of the APIVS Software

22

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 vse – Name of the VSE executable program.

 -L [1-3] – (required) Level of output for the conformance report.

 -c configuration-file – (optional) File that specifies a series of VSE
configurable items. If this file is omitted, default values are used.

 -i APIVSXML-file – (optional) Path to the input XML test script to use.
If –i is not present, the input will be read from stdin.

 -o output-file – (optional) Path of where to place the generated output
XML file. If –o is not present, the output will be placed on stdout.

Features of the APIVS Software

Command-Line Interface (CLI) of the APIVS Software

23

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 vse – Name of the VSE executable program.

 -L [1-3] – (required) Level of output for the conformance report.

 -c configuration-file – (optional) File that specifies a series of VSE
configurable items. If this file is omitted, default values are used.

 -i APIVSXML-file – (optional) Path to the input XML test script to use.
If –i is not present, the input will be read from stdin.

 -o output-file – (optional) Path of where to place the generated output
XML file. If –o is not present, the output will be placed on stdout.

Features of the APIVS Software

Command-Line Interface (CLI) of the APIVS Software

24

Features of the APIVS Software

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 -n test_suite_name – (optional) Specific “test suite” named in the input
XML file that is to be run. If omitted, all test suites contained in the file
will be run.

 -R count – (optional) Repeat test load count times, or indefinitely if
count is 0.

 -H – (optional) Halt on error when running in Repeat mode.

 -C – (optional) Capture mode. Displays and command messages
stored into files for use in subsequent tests.

Command line interface for APIVS Software (cont.)

25

Features of the APIVS Software

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 -n test_suite_name – (optional) Specific “test suite” named in the input
XML file that is to be run. If omitted, all test suites contained in the file
will be run.

 -R count – (optional) Repeat test load count times, or indefinitely if
count is 0.

 -H – (optional) Halt on error when running in Repeat mode.

 -C – (optional) Capture mode. Displays and command messages
stored into files for use in subsequent tests.

Command line interface for APIVS Software (cont.)

26

Features of the APIVS Software

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 -n test_suite_name – (optional) Specific “test suite” named in the input
XML file that is to be run. If omitted, all test suites contained in the file
will be run.

 -R count – (optional) Repeat test load count times, or indefinitely if
count is 0.

 -H – (optional) Halt on error when running in Repeat mode.

 -C – (optional) Capture mode. Displays and command messages
stored into files for use in subsequent tests.

Command line interface for APIVS Software (cont.)

27

Features of the APIVS Software

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:

 -n test_suite_name – (optional) Specific “test suite” named in the input
XML file that is to be run. If omitted, all test suites contained in the file
will be run.

 -R count – (optional) Repeat test load count times, or indefinitely if
count is 0.

 -H – (optional) Halt on error when running in Repeat mode.

 -C – (optional) Capture mode. Displays and command messages
stored into files for use in subsequent tests.

Command line interface for APIVS Software (cont.)

28

U.S. Department of Transportation
Office of the Assistant Secretary for
Research and Technology

What type of controller software is NOT traditionally
tested by agencies?

a) Data Collection Software

b) Signal Control Software

c) Application Programming Interface Software

d) Ramp Meter Software

Answer Choices

Question

30

Review of Answers

a) Data Collection Software

Incorrect. Data Collection is an application. Agencies usually
have methods for testing their applications.

b) Signal Control Software

Incorrect. Signal Control is an application. Agencies usually
have methods for testing their applications.

c) Application Programming Interface Software

Correct! Until recently, it was not possible to test API
software. The API Validation Suite discussed in this module
provides this ability.

d) Ramp Meter Software

Incorrect. Ramp Meter is an application. Agencies usually have
methods for testing their applications.

31

32

Explain the purpose of the
API Validation Suite (APIVS) Software

Use the API Reference Implementation (APIRI) test
documentation to specify acceptance testing

Use the API Reference
Implementation (APIRI) test
documentation to specify

acceptance testing

33

API Reference Implementation (APIRI) Project

34

Open
Source
APIRI &
APIVS

Manufacturers Agencies

ConsultantsSoftware
Vendors

Graphics: Ralph W. Boaz (U) Graphics: (L) Intelight, McCain, Econolite, Peek

API Reference Implementation (APIRI) Project

 USDOT funded the APIRI Project, which was completed in
October 2016

 Produced an open source software (OSS) implementation
of ATC 5401 Standard v02 called the APIRI Software
 https://github.com/apiriadmin/APIRI

 Produced OSS APIVS Software to test API Software
 https://github.com/apiriadmin/APIVS

 Formal Verification and Validation process that can be
used for testing any API Software implementation

 APIRI Project Test documentation conforms to
IEEE 829-2008

35

https://github.com/apiriadmin/APIRI
https://github.com/apiriadmin/APIVS

API Reference Implementation (APIRI) Project

 Consistent with the Linux O/S open source concept

 Promotes collaboration of developers across industry

 Provides forum for users to express ideas and concerns

 Promotes quick bug fixes and alternative solutions to issues

 Facilitates introduction of new application developers

 Incorporated on ATC units by manufacturers

 Provides best opportunity for consistent API Software behavior

36

Benefits

Test Document Purpose
Test Plan Specifies scope and approach for testing. Identifies the

features to be tested by the Test Plan and, in the APIRI
Project, includes the Test Design Specifications.

Test Design
Specification
(TDS)

Specifies refinements of the test approach in the test plan
and identifies the features to be tested by this design and the
associated tests. There is a TDS in the Test Plan for each of
the FPUI, FIO and TOD libraries.

Test Case
Specification
(TCS)

Defines the information needed as it pertains to inputs and
outputs from the software being tested. The APIRI project
produced about 40 Test Case Specifications.

Test Procedure
Specification
(TPS)

Specifies the steps for executing the test cases on the
APIRI software. There are TPSs for testing using the APIVS
software and TPSs for doing other methods of validation.

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-1998)

37

Test Document Purpose
Test Plan Specifies scope and approach for testing. Identifies the

features to be tested by the Test Plan and, in the APIRI
Project, includes the Test Design Specifications.

Test Design
Specification
(TDS)

Specifies refinements of the test approach in the test plan
and identifies the features to be tested by this design and the
associated tests. There is a TDS in the Test Plan for each of
the FPUI, FIO and TOD libraries.

Test Case
Specification
(TCS)

Defines the information needed as it pertains to inputs and
outputs from the software being tested. The APIRI project
produced about 40 Test Case Specifications.

Test Procedure
Specification
(TPS)

Specifies the steps for executing the test cases on the
APIRI software. There are TPSs for testing using the APIVS
software and TPSs for doing other methods of validation.

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-1998)

38

Test Document Purpose
Test Plan Specifies scope and approach for testing. Identifies the

features to be tested by the Test Plan and, in the APIRI
Project, includes the Test Design Specifications.

Test Design
Specification
(TDS)

Specifies refinements of the test approach in the test plan
and identifies the features to be tested by this design and the
associated tests. There is a TDS in the Test Plan for each of
the FPUI, FIO and TOD libraries.

Test Case
Specification
(TCS)

Defines the information needed as it pertains to inputs and
outputs from the software being tested. The APIRI project
produced about 40 Test Case Specifications.

Test Procedure
Specification
(TPS)

Specifies the steps for executing the test cases on the
APIRI software. There are TPSs for testing using the APIVS
software and TPSs for doing other methods of validation.

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-1998)

39

Test Document Purpose
Test Plan Specifies scope and approach for testing. Identifies the

features to be tested by the Test Plan and, in the APIRI
Project, includes the Test Design Specifications.

Test Design
Specification
(TDS)

Specifies refinements of the test approach in the test plan
and identifies the features to be tested by this design and the
associated tests. There is a TDS in the Test Plan for each of
the FPUI, FIO and TOD libraries.

Test Case
Specification
(TCS)

Defines the information needed as it pertains to inputs and
outputs from the software being tested. The APIRI project
produced about 40 Test Case Specifications.

Test Procedure
Specification
(TPS)

Specifies the steps for executing the test cases on the
APIRI software. There are TPSs for testing using the APIVS
software and TPSs for doing other methods of validation.

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-1998)

40

Test Document Purpose
Test Plan Specifies scope and approach for testing. Identifies the

features to be tested by the Test Plan and, in the APIRI
Project, includes the Test Design Specifications.

Test Design
Specification
(TDS)

Specifies refinements of the test approach in the test plan
and identifies the features to be tested by this design and the
associated tests. There is a TDS in the Test Plan for each of
the FPUI, FIO and TOD libraries.

Test Case
Specification
(TCS)

Defines the information needed as it pertains to inputs and
outputs from the software being tested. The APIRI project
produced about 40 Test Case Specifications.

Test Procedure
Specification
(TPS)

Specifies the steps for executing the test cases on the
APIRI software. There are TPSs for testing using the APIVS
software and TPSs for doing other methods of validation.

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-1998)

41

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-2008)

42

APIRI
Test Plan

FPUI Test
Design

FPUI
Test Cases

Test Execution

FPUI Test
Procedures

FIO Test
Design, etc.

TOD Test
Design, etc.

Graphic: Ralph W. Boaz

FPUI Test
Design, etc.

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-2008)

43

APIRI
Test Plan

FIO Test
Design

FIO
Test Cases

Test Execution

FIO Test
Procedures

TOD Test
Design, etc.

Graphic: Ralph W. Boaz

Organization and Content of the APIRI Test Documentation

APIRI Documents Used to Specify Testing
(IEEE Std 829-2008)

44

APIRI
Test Plan

TOD Test
Design

TOD
Test Cases

Test Execution

TOD Test
Procedures

FIO Test
Design, etc.

FPUI Test
Design, etc.

Graphic: Ralph W. Boaz

Organization and Content of the APIRI Test Documentation

1 Introduction

2 Test Items

3 Features to Be Tested

4 Features Not to Be Tested

5 Approach

6 Item Pass/Fail Criteria

7 Suspension Criteria and Resumption Requirements

8 Test Deliverables

9 Testing Tasks

10 Environmental Needs

APIRI Test Plan Outline

45

Organization and Content of the APIRI Test Documentation

Features to Be Tested

46

Test ID Document Name Brief Description
APIRI.TDS.2001 APIRI Test Design Spec 1 Test All APIRI FPUI Required Features
APIRI.TDS.3001 APIRI Test Design Spec 2 Test All APIRI FIO Required Features
APIRI.TDS.4001 APIRI Test Design Spec 3 Test All APIRI TOD Required Features
APIRI.TCS.2010 APIRI Test Case Spec 1 FPUI Text UI Virtual Displays
APIRI.TCS.2020 APIRI Test Case Spec 2 FPUI Front Panel Manager
APIRI.TCS.2030 APIRI Test Case Spec 3 FPUI Character Set and Screen Attribs
APIRI.TCS.2040 APIRI Test Case Spec 4 FPUI Reading and Writing Data
APIRI.TCS.2100 APIRI Test Case Spec 9 API Version Information (All Libraries)
APIRI.TCS.3010 APIRI Test Case Spec 10 General FIO Operations
APIRI.TCS.3020 APIRI Test Case Spec 11 FIO Inputs and Outputs
APIRI.TCS.3030 APIRI Test Case Spec 12 FIO Channel Mapping
…

Organization and Content of the APIRI Test Documentation

11 Responsibilities

12 Staffing and Training Needs

13 Schedule

14 Risks and Contingencies

15 Approvals

16 Appendices

16.1 FPUI Library Requirements to Validation Description Matrix

16.2 FIO Library Requirements to Validation Description Matrix

16.3 TOD Library Requirements to Validation Description Matrix

16.4 APIRI Test Design Specifications

APIRI Test Plan Outline (cont.)

47

Organization and Content of the APIRI Test Documentation

FPUI Library Requirements to Validation Description Matrix

48

Req ID Req Description ATC API
Function APIRI SDD Design Narrative Test Cases Test

Procedures

… … … … … …

APIR3.1.
1.2[10]

The API shall provide
a function to read a
queued character or
key code from the
input buffer of a

window.

fpui_read_
char

The implementation of the
fpui_read_char() library function
(Section 3.4.8) makes use of the

Linux operating system call to return
a single character from the input

buffer of the FrontPanelDriver device
interface (Section 3.3).

APIRI.TCS.
2040

APIRI.TPS.
1001

APIR3.1.
1.2[11]

The API shall provide
a function to write a

character to the
current cursor

position of a window.

fpui_write
_char

The implementation of the
fpui_write_char() library function
(Section 3.4.8) makes use of the

Linux operating system call to write
a single character to the output

buffer of the FrontPanelDriver device
interface (Section 3.3).

APIRI.TCS.
2040

APIRI.TPS.
1001

… … … … … …

Organization and Content of the APIRI Test Documentation

16.4.1 Test Design Specification 1 - Test All APIRI FPUI Features

16.4.1.1 Test Design Specification Identifier

The identifier for this Test Design Specification is
APIRI.TDS.2001.

16.4.1.2 Features To Be Tested

This Test Design Specification will test all FPUI features of the
API Reference Implementation (APIRI) which are subject to
testing for validation …

16.4.1.3 Approach Refinements

All test cases will be tested using the general approach as
defined in this test plan and as further refined in Test Procedure
Specification APIRI.TPS.0001…

APIRI Test Design Outlines

49

Organization and Content of the APIRI Test Documentation

16.4.1.4 Test Identification

All test documents to be used by this Test Design Specification
can be found in Section 3, Table 1.

16.4.1.5 Feature Pass/Fail Criteria

This Test Design Specification will be considered to have passed
if and only if every individual test case passes according to its
own pass/fail criteria as well as any pass/fail criteria associated
with the test procedure used to execute the test case.

APIRI Test Design Outlines (cont.)

50

Organization and Content of the APIRI Test Documentation

APIRI Test Case Outlines

51

2.6 Test Case Specification 4 – FPUI Reading and Writing Data

2.6.1 Test Case Specification Identifier
The identifier for this Test Case Specification is APIRI.TCS.2040.

2.6.2 Objective
The objective of this Test Case is to test the operation of the API
functions used to write display data to and read keypresses from the
Front Panel.

2.6.3 Test Items
…
APIR3.1.1.2[13] The API shall provide a function to write a string to
a window at the current cursor position.
APIR3.1.1.2[14] The API shall provide a function to write a string to
a window at a starting position defined by column number and line
number.

Organization and Content of the APIRI Test Documentation

2.6.4 Input Specifications

This test case requires the following file(s) as input:
File Description
C2040_in.xml APIVSXML test script (XML format)
Cxxxx_key0.txt keystroke file (Key ‘0’)
Cxxxx_key1.txt keystroke file (Key ‘1’)
Cxxxx_keyESC.txt keystroke file (Key ‘<Esc>’)
C2040_vd_1.txt Virtual Display compare file (display 1)
VS_config_1.txt VSE configuration file (for VSE command line)

2.6.5 Output Specifications

This test case produces the following file(s) as output:
File Description
C2040_log.xml Conformance report (XML format)

APIRI Test Case Outlines (cont.)

52

Organization and Content of the APIRI Test Documentation

2.1 Test Procedure Specification 1 - Auto-Execute Selected APIVS
Script(s)

2.1.1 Test Procedure Specification Identifier

The identifier for this Test Procedure Specification is
APIVS.TPS.1001.

2.1.2 Purpose

This procedure runs the Validation Suite Engine (VSE) using the
source test script and runtime options as associated with one or
more specific Test Case Specifications. This execution will run from
beginning to end with only limited human intervention…

APIRI Test Procedure Outlines

53

Organization and Content of the APIRI Test Documentation

2.1.3 Special Requirements

This procedure requires the editing of text files and the movement of
files between a host computer Hard Disk Drive and a USB Flash
Drive and is intended to be run by an operator with a reasonable
technical knowledge of personal computer (PC) file systems…

2.1.4 Procedure Steps

Subsections contained in this section: Log, Setup, Start, Proceed,
Measure, Shutdown, Restart, Stop, Wrap Up, and Contingencies

APIRI Test Procedure Outlines (cont.)

54

Test Document Purpose
APIRI Test Scripts Written in XML (extensible markup language), which allows

testers to exercise the API software without having to write
C programs. These Test Scripts are input to the VSE.

Flat Files Files that are used to configure the device emulators in the
APIVS software and files that represent known correct
outputs of the API software for given test cases.

Validation Suite
Engine (VSE)
Configuration File

Allows testers to set various system options for APIVS
software such as the file paths, screen size, and setting the
ports for the loopback device driver software.

Linux Shell
Scripts

Allows the testers to run successive executions of the VSE
without typing them in a line at a time.

Output Files Output from the VSE in XML format, which allows various
tools to be used for analyzing test results.

Files Needed for Executing the Test Cases

55

Test Document Purpose
APIRI Test Scripts Written in XML (extensible markup language), which allows

testers to exercise the API software without having to write
C programs. These Test Scripts are input to the VSE.

Flat Files Files that are used to configure the device emulators in the
APIVS software and files that represent known correct
outputs of the API software for given test cases.

Validation Suite
Engine (VSE)
Configuration File

Allows testers to set various system options for APIVS
software such as the file paths, screen size, and setting the
ports for the loopback device driver software.

Linux Shell
Scripts

Allows the testers to run successive executions of the VSE
without typing them in a line at a time.

Output Files Output from the VSE in XML format, which allows various
tools to be used for analyzing test results.

Files Needed for Executing the Test Cases

56

Test Document Purpose
APIRI Test Scripts Written in XML (extensible markup language), which allows

testers to exercise the API software without having to write
C programs. These Test Scripts are input to the VSE.

Flat Files Files that are used to configure the device emulators in the
APIVS software and files that represent known correct
outputs of the API software for given test cases.

Validation Suite
Engine (VSE)
Configuration File

Allows testers to set various system options for APIVS
software such as the file paths, screen size, and setting the
ports for the loopback device driver software.

Linux Shell
Scripts

Allows the testers to run successive executions of the VSE
without typing them in a line at a time.

Output Files Output from the VSE in XML format, which allows various
tools to be used for analyzing test results.

Files Needed for Executing the Test Cases

57

Test Document Purpose
APIRI Test Scripts Written in XML (extensible markup language), which allows

testers to exercise the API software without having to write
C programs. These Test Scripts are input to the VSE.

Flat Files Files that are used to configure the device emulators in the
APIVS software and files that represent known correct
outputs of the API software for given test cases.

Validation Suite
Engine (VSE)
Configuration File

Allows testers to set various system options for APIVS
software such as the file paths, screen size, and setting the
ports for the loopback device driver software.

Linux Shell
Scripts

Allows the testers to run successive executions of the VSE
without typing them in a line at a time.

Output Files Output from the VSE in XML format, which allows various
tools to be used for analyzing test results.

Files Needed for Executing the Test Cases

58

Test Document Purpose
APIRI Test Scripts Written in XML (extensible markup language), which allows

testers to exercise the API software without having to write
C programs. These Test Scripts are input to the VSE.

Flat Files Files that are used to configure the device emulators in the
APIVS software and files that represent known correct
outputs of the API software for given test cases.

Validation Suite
Engine (VSE)
Configuration File

Allows testers to set various system options for APIVS
software such as the file paths, screen size, and setting the
ports for the loopback device driver software.

Linux Shell
Scripts

Allows the testers to run successive executions of the VSE
without typing them in a line at a time.

Output Files Output from the VSE in XML format, which allows various
tools to be used for analyzing test results.

Files Needed for Executing the Test Cases

59

Test Document Purpose
APIRI Test Scripts Written in XML (extensible markup language), which allows

testers to exercise the API software without having to write
C programs. These Test Scripts are input to the VSE.

Flat Files Files that are used to configure the device emulators in the
APIVS software and files that represent known correct
outputs of the API software for given test cases.

Validation Suite
Engine (VSE)
Configuration File

Allows testers to set various system options for APIVS
software such as the file paths, screen size, and setting the
ports for the loopback device driver software.

Linux Shell
Scripts

Allows the testers to run successive executions of the VSE
without typing them in a line at a time.

Output Files Output from the VSE in XML format, which allows various
tools to be used for analyzing test results.

Files Needed for Executing the Test Cases

60

Files Needed for Executing the Test Cases

61

APIRI Test Scripts in XML

ATC 5401 API Reference Implementation Project
Filename: C2040_in.xml
File Type: APIVSXML test script (XML format)
Test Case: APIRI.TCS.2040
Description: FPUI Reading and Writing Data
TC XML: begins on Line 1187

Test Case Narrative
open an FPUI connection
put the app in focus, wait for confirmation
write to the VD using all write methods
(APIR3.1.1.2[15])
(APIR3.1.1.2[16])
(APIR3.1.1.2[11])

…

Files Needed for Executing the Test Cases

62

APIRI Test Scripts in XML (cont.)
…
<!-- write to the VD using all write method -->
<Set var="$write_buf" value="@C2040"/>
<Set var="$write_chr" value="@J"/>
<Set var="$write_len" value="%1"/>
<Set var="$row" value="%4"/>
<Set var="$column" value="%6"/>
<!-- (APIR3.1.1.2[15]) -->
<Call ref="fpui_write" setUp="API_Init_Variables"/>
<!-- (APIR3.1.1.2[16]) -->
<Call ref="fpui_write_at“ setUp="API_Init_Variables"/>
<!-- (APIR3.1.1.2[11]) -->
<Call ref="fpui_write_char" setUp="API_Init_Variables"/>
…

Files Needed for Executing the Test Cases

63

Expected Result Flat Files
-- Virtual Display and Global Variable Dump –
Date: 20160713 19:55:26 -
#
Display Rows:
#0 1 2 3 4
#234567890123456789012345678901234567890123456789

FRONT PANEL MANAGER
SELECT WINDOW [0-F] SET DEFAULT *[0-F]
0 C1160_00 1 C1160_01
2 C1160_02 3 C1160_03
4 C1160_04 5 C1160_05
6 C1160_06 7 C1160_07
8 C1160_08 9 C1160_09
[UP/DN ARROW] [CONFIG INFO- NEXT]
#--

Files Needed for Executing the Test Cases

64

Expected Result Flat Files (cont.)

ATC 5401 API Reference Implementation Project

Filename: C3020_cmd55a.txt
File Type: APIVS flat file (text format)
Test Case: APIRI.TCS.3xxx
Description: file load of Command Frame 55, test outputs set

Date Revision Description
2/24/16 1.0 initial release
0x37 0x05 0x50 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00

Files Needed for Executing the Test Cases

65

Validation Suite Engine (VSE) Configuration File
…
Filename: VS_config_1.txt
File Type: VSE configuration file
Test Case: many
Description:

Date Revision Description
10/21/15 1.0 initial release
XMLInputFilePath = ./
XMLOutputFilePath = /tmp/
SetFilePath = ./
ScreenHeight = 8
ScreenWidth = 40
FPUICompareFilePath = ./
FPUIInputFilePath = ./
…

U.S. Department of Transportation
Office of the Assistant Secretary for
Research and Technology

What document is used to specify the inputs and
outputs for a particular test of the API Software?

a) Test Design Specification

b) Test Procedure Specification

c) Test Plan

d) Test Case Specification

Answer Choices

Question

67

Review of Answers

a) Test Design Specification

Incorrect. The TDS specifies refinements of the test approach in
the test plan.

b) Test Procedure Specification

Incorrect. The TPS specifies the steps for executing the test
cases on the API software.

c) Test Plan

Incorrect. The test plan specifies the scope and approach for
testing and identifies the features to be tested. In the APIRI
Project, it also contains the Test Design Specifications.

d) Test Case Specification

Correct! In the APIRI Project, all of the tests cases are
contained in a single document.

68

69

Explain the purpose of the API Validation Suite
(APIVS) Software

Use the API Reference Implementation (APIRI) test
documentation to specify acceptance testing

Use the APIVS Software to
test the API Software

Use the APIVS Software to
test the API Software

70

Open Source Software (OSS) Environment of the APIVS
Software

APIVS Repository – https://github.com/apiriadmin/APIVS

71

Preparations for Testing

 Basic Equipment
 ATC unit with operational API Software

 PC with 1GB available hard drive storage and USB port

 VSE executable provided by your ATC vendor (or compiled by you
using vendor’s tool chain)

 If using CLI Method add

 Serial or Ethernet cable to connect the PC to the ATC unit

 If using USB Test Package Method add

 1GB USB Flash Drive (minimum), formatted with a FAT16 or FAT32
file system

72

Equipment Required for Testing

Preparations for Testing

 APIVS Software has CLI designed to run in a Linux “shell”

 Allows complete control for each execution of a test

 Best method if tester is doing a lot of variations on individual tests or
creating new tests

 Tester must be comfortable working in a Linux environment

73

Command-Line Interface (CLI) Method

Graphics: Thinkstock (L) and Ralph W. Boaz (R)

Preparations for Testing

 Preconfigured tests can be downloaded from the web to a USB flash
drive

 Simply plug the USB drive into the ATC unit and turn on the power
 Variations (if desired) made by simple edits of the runAPIVS file on

the USB drive

 Windows or Linux environment

74

USB Test Package Method

Graphics: Ralph W. Boaz (L) and Thinkstock (R)

Using the USB Test Package Method

1. Download or clone the APIVS repository to a PC

2. Install a USB flash drive into your PC

3. Run package.sh (for Linux PCs) or package.bat (for Windows
PCs) from a Linux or Windows shell, respectively

4. Copy the VSE executable and APIVS Loopback Drivers to the
USB drive

5. (optional) Edit runAPIVS to modify tests

6. Install the USB flash drive in the ATC unit

7. Turn the ATC unit on

8. Wait for completion

9. Test results may be analyzed by reinstalling the USB flash drive
on the PC and viewing the log files (*log.xml)

75

Using the USB Test Package Method

76

APIVS
Repository

Vendor Supplied
VSE Executable

Download or
Clone

Copy
Software

Run package.sh
or package.bat

Copy
Results

Happy Tester

ATC

Install
and
Run

Remove

Prepare the APIVS Software for Testing

77

vse -L [1-3] [-c configuration-file] [-i APIVSXML-file] [-o output-file]
[-n test_suite_name] [-R count] [-H] [-C]

Where:
 vse – Name of the VSE executable program.
 -L [1-3] – (required) Conformance level of the output desired.
 -c configuration-file – (optional) File that specifies a series of VSE

configurable items. If this file is omitted, default values are used.
 -i APIVSXML-file – (optional) Path to the input XML test script to use.

If –i is not present, the input will be read from stdin.
 -o output-file – (optional) Path of where to place the generated output

XML file. If –o is not present, the output will be placed on stdout.
 -R count – (optional) Repeat test load count times, or indefinitely if

count is 0.

Command-Line Interface (CLI) of the APIVS Software

Prepare the APIVS Software for Testing

 runAPIVS is a Linux shell script in the root of the USB Flash Drive

 Defaults to running all tests cases on the API software one time with
Logging Level 1

 Easy edits to

 Change the Logging Level

 Increase iterations of particular tests

 Run a subset of the test cases and/or change other VSE options

Editing runAPIVS (optional)

78

Editing the runAPIVS Linux Shell Script

79

…
Filename: runAPIVS
File Type: Linux shell script
Test Case: many
Description: run VSE from USB at startup on
specific test cases

Date Revision Description
2/24/16 1.0 initial release

start async loopback driver; add symbolic links
insmod /media/sda1/APIVS/bin/tty0tty.ko
ln -s /dev/tnt0 /dev/sp6_loopback_a
ln -s /dev/tnt1 /dev/sp6_loopback_b
…
set the conformance level this run (1,2,3)
LEVEL=1
…

Editing the runAPIVS Linux Shell Script

80

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2020_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2020... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2020_in.xml
-o C2020_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2030_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2030... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2030_in.xml
-o C2030_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2040_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2040... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2040_in.xml
-o C2040_log.xml

print_test_result
…

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2020_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2020... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2020_in.xml
-o C2020_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2030_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2030... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2030_in.xml
-o C2030_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2040_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2040... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2040_in.xml
-o C2040_log.xml

print_test_result
…

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2020_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2020... " >/dev/sp6
vse -L 3 -c ./VS_config_1.txt -i C2020_in.xml
-o C2020_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2030_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2030... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2030_in.xml
-o C2030_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2040_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2040... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2040_in.xml
-o C2040_log.xml

print_test_result
…

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2020_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2020... " >/dev/sp6
vse -L 3 -c ./VS_config_1.txt -i C2020_in.xml
-o C2020_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2030_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2030... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2030_in.xml –R 10
-o C2030_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2040_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2040... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2040_in.xml
-o C2040_log.xml

print_test_result
…

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2020_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2020... " >/dev/sp6
vse -L 3 -c ./VS_config_1.txt -i C2020_in.xml
-o C2020_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2030_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2030... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2030_in.xml –R 10
-o C2030_log.xml

print_test_result

reset_modules
if ["$DELETE_LOGS" == TRUE]; then rm C2040_log.xml; fi
clear_test_line; printf "Testing APIRI.TCS.2040... " >/dev/sp6
vse -L $LEVEL -c ./VS_config_1.txt -i C2040_in.xml
-o C2040_log.xml

print_test_result
…

Editing the runAPIVS Linux Shell Script

81

Use the APIVS Software to Execute Tests

Running the USB Test Package

82

 Plug the USB drive into the ATC
and turn it on

 Follow the screens that appear
on the ATC unit front panel

A T C 5 4 0 1 A P I V a l i d a t i o n S u i t e v 1 . 0
B e g i n T e s t [Y E S] / [N O] ?

Use the APIVS Software to Execute Tests

Running the USB Test Package

83

 Plug the USB drive into the ATC
and turn it on

 Follow the screens that appear
on the ATC unit front panel

A T C 5 4 0 1 A P I V a l i d a t i o n S u i t e v 1 . 0
R u n n i n g t e s t s e s s i o n .
T e s t i n g A P I R I . T C S . 2 0 1 0 . . .

T e s t c a s e s p a s s e d : 1 3 f a i l e d : 0

Use the APIVS Software to Execute Tests

Running the USB Test Package

84

 Plug the USB drive into the ATC
and turn it on

 Follow the screens that appear
on the ATC unit front panel

A T C 5 4 0 1 A P I V a l i d a t i o n S u i t e v 1 . 0
R u n n i n g t e s t s e s s i o n .
S e s s i o n c o m p l e t e .
P l e a s e r e m o v e U S B d r i v e a n d r e b o o t .

T e s t c a s e s p a s s e d : 4 0 f a i l e d : 0

U.S. Department of Transportation
Office of the Assistant Secretary for
Research and Technology

What is not an appropriate reason to edit the
runAPIVS shell script?

a) Turn off all test output

b) Change the number of iterations on a test

c) Change the conformance report logging

d) Select a subset of the existing test cases

Answer Choices

Question

86

Review of Answers

a) Turn off all test output

Correct! One cannot turn off all test output. A pass/fail is the
most terse output available.

b) Change the number of iterations on a test

Incorrect. Selecting a particular test case is a good reason to
edit runAPIVS.

c) Change the conformance report logging

Incorrect. Changing the conformance report logging is a good
reason to edit runAPIVS.

d) Select a subset of the existing test cases

Incorrect. Selecting a subset of the existing test cases is a good
reason to edit runAPIVS.

87

88

Explain the purpose of the API Validation Suite
(APIVS) Software

Use the API Reference Implementation (APIRI) test
documentation to specify acceptance testing

Use the APIVS Software to
test the API Software

Interpret and report results
of testing API Software

Interpret and report results
of testing API Software

89

Analyze Results Using Off-the-Shelf Tools

 Outputs of the APIVS Software are in XML

 In the simplest case, all users are looking for is a PASS/FAIL indication

 Otherwise, use a tool. Examples:
▫ Notepad++ (http://notepad-plus-plus.org)

− General purpose editing tool for software-related files
− Color coding and formatting of XML text files

▫ XML Differences (www.corefiling.com/opensource/xmldiff.html)
− Online comparison of XML files

▫ XmlGrid (http://xmlgrid.net)
− Online editor displays in formatted XML text or in grids (tables)

▫ XML Viewer (www.codebeautify.org/xmlviewer)
− Online editor displays in formatted XML text or in tree view

90

http://notepad-plus-plus.org/
http://www.corefiling.com/opensource/xmldiff.html
http://xmlgrid.net/
http://www.codebeautify.org/xmlviewer

Analyze Results Using Off-the-Shelf Tools

91

Analyze Results Using Off-the-Shelf Tools

92

Analyze Results Using Off-the-Shelf Tools

93

Analyze Results Using Off-the-Shelf Tools

94

Create Test Reports Using the APIVS

 Testers may include test logs in their test reports

 Level 1 – Conformance/nonconformance indication
only
▫ 304 lines of output – about 16 minutes

 Level 2 – Conformance/nonconformance indication
and summary result
▫ 9,693 lines of output – about 16 minutes

 Level 3 – Conformance/nonconformance
indication, summary result, and all logs and traces
▫ 73,066 lines of output – about 22 minutes

Conformance report options

95Graphic: Thinkstock

Create Test Reports for the API Software

IEEE 829-2008 Level Test Report Outline

96Graphic: Thinkstock

1 Introduction
1.1 Document identifier
1.2 Scope
1.3 References

2 Details
2.1 Overview of test results
2.2 Detailed test results
2.3 Rationale for decisions
2.4 Conclusions and recommendations

3 General
3.1 Glossary
3.2 Document change procedures and history

Combine All of the Out Log Files into the Detailed Test
Results

97

2.2 Detailed Test Results
…
 <APIVSRun date="2016-10-30 04:48:07 AM UTC" configuration="./VS_config_1.txt"

input="./C1310_in.xml" output="/tmp/C1310_log.xml" testSuite="ALL_TESTS"
level="conformance" >
<RunResult date="2016-10-30 04:48:17 AM UTC" status="PASS" />

 < APIVSRun date="2016-10-30 04:48:18 AM UTC" configuration="./VS_config_1.txt"
input="./C1320_in.xml" output="/tmp/C1320_log.xml" testSuite="ALL_TESTS"
level="conformance" >
<RunResult date="2016-10-30 04:48:29 AM UTC" status="PASS" />

 < APIVSRun date="2016-10-30 04:48:30 AM UTC" configuration="./VS_config_1.txt"
input="./C1330_in.xml" output="/tmp/C1330_log.xml" testSuite="ALL_TESTS"
level="conformance" >
<RunResult date="2016-10-30 04:48:41 AM UTC" status="PASS" />

…

U.S. Department of Transportation
Office of the Assistant Secretary for
Research and Technology

True or False: It is a good idea to always log as
much information as possible on all tests.

a) True

b) False

Answer Choices

Question

99

Review of Answers

a) True

Incorrect. If a tester wants to view full logging, it is better to do
this on selected tests.

b) False

Correct! Logging all of the data creates a voluminous report
and makes understanding the results difficult. While full
logging on all tests can be done, it is advised that testers
repeat their test with full logging for tests that failed
previously.

100

Explain the purpose of the
API Validation Suite (APIVS) Software

Use the API Reference Implementation (APIRI) test
documentation to specify acceptance testing

Use the APIVS Software to
test the API Software

Interpret and report results
of testing API Software

ATC Curriculum Completed To Date
Module A207a/b: Building an ITS Infrastructure Based on the
Advanced Transportation Controller (ATC) 5201 Standard

Module A208: Using the ATC 5401 API Standard to Leverage ITS
Infrastructures

Module A307a: Understanding User Needs for Advanced
Transportation Controllers (ATC) Based on ATC 5201 Standard v06

Module A307b: Understanding Requirements for Advanced
Transportation Controllers (ATC) Based on ATC 5201 Standard v06

Module T307: Applying Your Test Plan to the Advanced
Transportation Controller (ATC) Based on ATC 5201 Standard v06

Module T308: Acceptance Testing for Advanced Transportation
Controller Application Programming Interface Software

102

103

Feedback
Please use the Feedback link below to
provide us with your thoughts and
comments about the value of the training.

Thank you!

Thank you for completing this module.

	Slide Number 1
	Welcome
	Slide Number 3
	Instructor
	Slide Number 5
	Slide Number 6
	API Software Testing in the Context of ATC Unit Testing
	API Software Testing in the Context of ATC Unit Testing
	API Software Testing in the Context of ATC Unit Testing
	API Software Testing in the Context of ATC Unit Testing
	API Software Testing in the Context of ATC Unit Testing
	API Software Testing in the Context of ATC Unit Testing
	API Software Testing in the Context of ATC Unit Testing
	Architecture of the APIVS Software
	Architecture of the APIVS Software
	Architecture of the APIVS Software
	Architecture of the APIVS Software
	Architecture of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Features of the APIVS Software
	Slide Number 29
	What type of controller software is NOT traditionally tested by agencies?
	Review of Answers
	Slide Number 32
	Slide Number 33
	API Reference Implementation (APIRI) Project
	API Reference Implementation (APIRI) Project
	API Reference Implementation (APIRI) Project
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Organization and Content of the APIRI Test Documentation
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Files Needed for Executing the Test Cases
	Slide Number 66
	What document is used to specify the inputs and outputs for a particular test of the API Software?
	Review of Answers
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	What is not an appropriate reason to edit the runAPIVS shell script?
	Review of Answers
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	True or False: It is a good idea to always log as much information as possible on all tests.
	Review of Answers
	Slide Number 101
	ATC Curriculum Completed To Date
	����Feedback�Please use the Feedback link below to provide us with your thoughts and comments about the value of the training.����Thank you!��

