#### **Driving Future Highways**

Welcome to the Saxton Transportation Operations Laboratory

#### **Vision of the Saxton Lab**

Build Relationships with Universities, Researchers, and Industry

Develop Technologies and Evaluate Concepts

Advance the State of the Art through Transportation Operations Research

Promote Professional Development

Build on Federal Institutional Knowledge

#### **Saxton Lab Capabilities**



### **Development Platform for FHWA Innovation Research Vehicles**

- Proof of Concept Vehicles
- Research Fleet Communications
  - 5.9GHz DSRC, Cellular/LTE, Corrected GPS
- On-board Technology
  - Connected Vehicle Data Collection and Processing
  - Stock Radar and Ultra-Sonic Sensors
  - Front and rear-facing cameras





### **Connected Laboratory**

- State-of-the-Art Simulation and Analysis Tools
- High-Bandwidth Internet2 Connectivity
- High-Capacity Data Servers
  - Front and rear-facing cameras







### **Connected Vehicle Highway Testbed –** Intelligent Intersection at TFHRC



### **MOU with DHS** Federal Law Enforcement Training Center



Skid Pad F.

Ramps

Future:

Existing

Α.

Β.

C.

D.

Ε.

DSRC / Wi-Fi **V2I** Communications

### IAA with U.S. Army Aberdeen Test and Evaluation Command



### **Automation - Example Systems at Each Level**

| SAEL<br>evel | Example Systems                                                                                        | Driver Roles                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1            | Adaptive Cruise Control OR<br>Lane Keeping Assistance                                                  | Must drive <u>other</u> functions and monitor driving environment                  |
| 2            | Adaptive Cruise Control AND Lane<br>Keeping Assistance<br>Traffic Jam Assist                           | Must monitor driving<br>environment (system nags<br>driver to try to ensure it)    |
| 3            | Traffic Jam Pilot<br>Automated parking<br>Highway Autopilot                                            | May read a book, text, or web<br>surf, but be prepared to<br>intervene when needed |
| 4            | Closed campus driverless shuttle<br>Valet parking in garage<br>'Fully automated' in certain conditions | May sleep, and system can<br>revert to minimum risk<br>condition if needed         |
| 5            | Automated taxi<br>Car-share repositioning system                                                       | No driver needed                                                                   |

Source: California PATH

### **Automation - Example Systems at Each Level**

| SAEL<br>evel | Example Systems                                                                                        | Driver Roles                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1            | Adaptive Cruise Control OR<br>Lane Keeping Assistance                                                  | Must drive <u>other</u> functions and monitor driving environment                  |
| 2            | Adaptive Cruise Control AND Lane<br>Keeping Assistance<br>Traffic Jam Assist                           | Must monitor driving<br>environment (system nags<br>driver to try to ensure it)    |
| 3            | Traffic Jam Pilot<br>Automated parking<br>Highway Autopilot                                            | May read a book, text, or web<br>surf, but be prepared to<br>intervene when needed |
| 4            | Closed campus driverless shuttle<br>Valet parking in garage<br>'Fully automated' in certain conditions | May sleep, and system can<br>revert to minimum risk<br>condition if needed         |
| 5            | Automated taxi<br>Car-share repositioning system                                                       | No driver needed                                                                   |

Source: California PATH

### Research in Applications for Connected Automation

#### Connected Automation Applications for Public Benefits:

- Cooperative Adaptive Cruise Control (CACC): Adds V2V communication to commercial ACC and allows platoons of cars or trucks. Can reduce traffic congestion, reduce fuel consumption, and improve safety.
- Eco-Approach and Departure (Glidepath): Uses V2I communication from traffic signals to allow vehicles to traverse traffic lights and travel along arterials more efficiently. Can reduce fuel consumption at intersections by 20%

#### **> FHWA Roles:**

- Develop and analyze concepts with traffic models
- Test concepts and enabling technologies with Lab prototypes on test tracks
- Engage automotive OEM's to work toward commercial products
- Engage state DOT's to develop strategies for deployment

### **Cooperative Adaptive Cruise Control Evolution**

## Three different types of cruise control



# **CACC** Platooning



### **Cooperative Adaptive Cruise Control Research**

Create a high-speed and high-capacity managed CACC lane

Examine the impacts of different CACC operational strategies

- Dedicated Lane VS. Shared Lane
- Car-following headway
- Platoon size
- Market penetration levels
- On-ramp and Off-ramp volume
- Lane-changing criteria between CACC and GP lane

### Build the Simulation Testbed --- CACC Site Selection



- Major urban corridor for commuters
- Severe congestion problems
- Four lanes in each direction
- Existing HOV-2 lane
- Six interchanges

### **CACC** Take-Away Bullets

- The dedicated lane's capacity increases from 1650 to 3800 vehicles/hour/lane (0.6s headway)
- CACC lane has shorter and more reliable travel time, which will promote CACC technology
- Cooperative lane-changes are important, especially under high speed differentials



# **GlidePath Prototype Application**

## **Background: Completed AERIS Proof of Concept Testing (Fall 2012)** A field test was conducted at TFHRC with a single vehicle at a single intersection with no traffic



Source: USDOT, November 2013

Longitudinal Control Capabilities

Traffic Signal Head



### **GlidePath Prototype Application Components – Automated Vehicle**

#### Ford Escape Hybrid developed by TORC with ByWire XGV System

### - Existing Capabilities

- Full-Range Longitudinal Speed Control
- Emergency Stop and Manual Override

### - Additional Functionality

- Computing Platform with EAD Algorithm
- DSRC OBU
- High-Accuracy Positioning Solution
- Driver Indicators/ Information Display
- User-Activated System Resume
- Data Logging





## GlidePath Prototype Application Research Study Findings



- HMI-based driving provided a 7% fuel economy benefit
- Partially automated driving provided a 22% benefit
- Minimizing controller lag is important
- Precise positioning is important near the intersection stop bar



### To Learn More...

#### > Visit:

- FHWA Office of Operations Website: <u>http://ops.fhwa.dot.gov/</u>
- Turner-Fairbank Highway Research Center Website: <u>http://www.fhwa.dot.gov/research</u> /tfhrc/offices/operations/
- Contact:
  - **Robert Ferlis**
  - Office of Operations Research &
  - **Development Technical Director**
  - Robert.Ferlis@dot.gov

