Connected Automation

ITS America 2016

June 12, 2016

Kevin Dopart, U.S. Department of Transportation
Automation Can Be a Tool for Solving Transportation Problems

- Improving safety
 - Reduce and mitigate crashes

- Increasing mobility and accessibility
 - Expand capacity of roadway infrastructure
 - Enhance traffic flow dynamics
 - More personal mobility options for disabled and aging population

- Reducing energy use and emissions
 - Aerodynamic “drafting”
 - Improve traffic flow dynamics

…but connectivity is critical to achieving the greatest benefits
Connected Automation for Greatest Benefits

Autonomous Vehicle
Operates in isolation from other vehicles using internal sensors

Connected Vehicle
Communicates with nearby vehicles and infrastructure

Connected Automated Vehicle
Leverages autonomous and connected vehicle capabilities
Example Systems at Each Automation Level

<table>
<thead>
<tr>
<th>SAE Level</th>
<th>Example Systems</th>
<th>Driver Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adaptive Cruise Control OR Lane Keeping Assistance</td>
<td>Must drive other functions and monitor driving environment</td>
</tr>
<tr>
<td>2</td>
<td>Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist</td>
<td>Must monitor driving environment (system nags driver to try to ensure it)</td>
</tr>
<tr>
<td>3</td>
<td>Traffic Jam Pilot Automated parking Highway Autopilot</td>
<td>May read a book, text, or web surf, but be prepared to intervene when needed</td>
</tr>
<tr>
<td>4</td>
<td>Closed campus driverless shuttle Valet parking in garage ‘Fully automated’ in certain conditions</td>
<td>May sleep, and system can revert to minimum risk condition if needed</td>
</tr>
<tr>
<td>5</td>
<td>Automated taxi Car-share repositioning system</td>
<td>No driver needed</td>
</tr>
</tbody>
</table>

Source: California PATH
Example Systems at Each Automation Level

<table>
<thead>
<tr>
<th>SAE Level</th>
<th>Example Systems</th>
<th>Driver Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adaptive Cruise Control OR Lane Keeping Assistance</td>
<td>Must drive other functions and monitor driving environment</td>
</tr>
<tr>
<td>2</td>
<td>Adaptive Cruise Control AND Lane Keeping Assistance</td>
<td>Must monitor driving environment (system nags driver to try to ensure it)</td>
</tr>
<tr>
<td></td>
<td>Traffic Jam Assist</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Traffic Jam Pilot</td>
<td>May read a book, text, or web surf, but be prepared to intervene when needed</td>
</tr>
<tr>
<td></td>
<td>Automated parking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Highway Autopilot</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Closed campus driverless shuttle</td>
<td>May sleep, and system can revert to minimum risk condition if needed</td>
</tr>
<tr>
<td></td>
<td>Valet parking in garage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Fully automated’ in certain conditions</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Automated taxi</td>
<td>No driver needed</td>
</tr>
<tr>
<td></td>
<td>Car-share repositioning system</td>
<td></td>
</tr>
</tbody>
</table>

Source: California PATH
Current L1 Connected Automation R&D

- Cooperative Adaptive Cruise Control (CACC) development
- Traffic Operations Applications
- Eco-Approach and Departure from Signals
- Truck Platooning
CACC Development Projects

- Enabling CACC High Performance Vehicle Streams
- CACC Field Tests
- OEM Assessment of CACC concepts and prototype
- Driver Acceptance of L1 Applications
Freeway Traffic Operations Applications

- Freeway Speed Harmonization
- Lane Change/Merge Operations

Lane change, merge, and weave maneuvers

[Graph showing Normalized Power Spectral Density]
Eco GlidePath at Signalized Intersections

1. Traffic Signal Controller
 - The roadside unit transmits SPaT and MAP messages using DSRC.

2. SPaT Black Box

3. Roadside Unit

4. Onboard Unit
 - Onboard Computer with Automated Longitudinal Control Capabilities

5. Backhaul: Communications back to TMC

6. Driver-Vehicle Interface
 - Back Office: A local TMC processes data from roads and vehicles

7. Back Office: A local TMC processes data from roads and vehicles
Truck Platooning

- Two projects underway
 - Auburn U/Peterbilt (2-truck platoons)
 - Caltrans/UC Berkeley/Volvo (3-truck platoons)
- Concept: longitudinal control only; all drivers steer
Assessing the Impacts of Automation

[Diagram showing the interrelations between various factors such as safety, vehicle operations, energy/emissions, network efficiency, travel behavior, personal mobility, public health, land use, socio-economic impacts, and their temporal and spatial resolutions.]
Impact Mechanism Example

Vehicle operations and road capacity

- Car following
 - Affects lane capacity for an uninterrupted facility
 - Human driver: minimum safe headway, speed variation
 - Autonomous: reduced speed variation
 - Connected / automated: may enable reduced headways with real-time information from lead vehicle(s)

- Gap acceptance
 - Affects intersection capacity
 - Human driver: depends on perception and judgment
 - Autonomous: may have less variability than humans
 - Connected / automated: possibility of cooperation with other vehicles

- Interruptions to traffic flow
 - Affects link and intersection capacity
 - Connected / automated: possibility of cooperation with infrastructure (GlidePath), and with other vehicles to reduce interruptions
Plans for 2016-2017

• Identify data sources and automation applications for initial modeling
• Examine linkages between micro and regional mobility models
• Develop AV impact models
 • Start with Safety, Mobility and Environment
 • Continue to other areas
• Coordinate with U.S. and international evaluation efforts