Tampa (THEA) CV Pilot Deployment Results and Transition Plan

Govind Vadakpat, USDOT; Bob Frey, THEA; Steve Novosad, HNTB
Sisinnio Concas and Achilleas Kourtellis, CUTR
WEBINAR AGENDA

- Purpose of this Webinar
 - Share the deployment performance results from THEA Connected Vehicle Pilot
 - Outline the plan to migrate the current pilot to Connected Vehicle Real-World Test Site (CVRTS).

- Webinar Content
 - Connected Vehicle Pilot Deployment Program Overview
 - THEA Pilot Deployment Performance Results and Transition Plan
 - Stakeholder Q&A

- Webinar Protocol
 - Please mute your phone during the entire webinar.
 - You are welcome to ask questions via chatbox at the Q&A Section.
 - The webinar recording and the presentation material will be posted on the CV Pilots website.
CV PILOT DEPLOYMENT PROGRAM GOALS

- Spur Early CV Tech Deployment
- Measure Deployment Benefits
- Resolve Deployment Issues
- Wirelessly Connected Vehicles
- Safety
- Technical
- Mobile Devices
- Mobility
- Institutional
- Infrastructure
- Environment
- Financial
The Three Pilot Sites
THEA CV Pilot Deployment Overview

Steve Novosad
DEPLOYMENT LOCATION

- Located in the core of Tampa Central Business District
- Project managed by the Tampa-Hillsborough Expressway Authority (THEA)
 - Owns / operates Selmon Expressway
 - Owns Meridian Ave traffic signals
- West: Residential community of Brandon
- East: MacDill Air Force Base
THEA CV PILOT GOALS

- **Enhance mobility**
 - Travel time
 - Travel time reliability
 - Delay

- **Increase safety**
 - Crashes
 - Conflicts

- **Help sustain environment**
 - Tailpipe emissions
DEPLOYMENT AREA
Use Case 1 – Morning Backups
- Forward Collision Warning (FCW)
- Emergency Electronic Brake Light (EEBL) Warning
- Curve Speed Warning (CSW)
- Intelligent Traffic Signal System (I-SIG)

Use Case 2 – Wrong Way Entry
- Red Light Violation Warning (RLVW)
- I-SIG
- Intersection Movement Assist (IMA)
Use Case 3 – Pedestrian Safety
- Mobile Accessible Pedestrian Signal System (PED-SIG)
- Pedestrian in a Crosswalk Vehicle Warning (PED-X)
- FCW
- IMA

Use Case 4 – Transit Priority
- Transit Signal Priority (TSP)
- I-SIG
- IMA
• Use Case 5 – Streetcar Conflicts
 □ Vehicle Turning Right in Front of Transit Vehicle (VTRFTV)
 □ I-SIG
 □ PED-SIG
 □ PED-X

• Use Case 6 – Traffic Progression
 □ Probe Data Enabled Traffic Monitoring (PDETM)
 □ I-SIG
 □ IMA
CHANGES TO APPS BY USE CASE

- Use Case 1 – Morning Backups
 - Replace Curve Speed Warning (CSW) with End of Ramp Deceleration Warning (ERDW)
 - Replace I-SIG with queue length calculation algorithm

- Use Case 2 – Wrong Way Entry
 - Replaced RLVW with Wrong Way Entry (WWE) app
CHANGES TO APPS BY USE CASE

- Use Case 3 – Pedestrian Safety
 - Replaced PED-SIG and PED-X with Pedestrian Collision Warning (PCW)
- Use Case 4 – Transit Priority
 - Replaced I-SIG with NTCIP 1202 v2 communication to the signal controller
 - Proposed to add Pedestrian Transit Movement Warning (PTMW)
- Use Case 5 – Streetcar Conflicts
 - PED-SIG and PED-X proposed to be replaced with PTMW
- Use Case 6 – Traffic Progression
 - Replaced Probe Data Enabled Traffic Monitoring (PDETM) by internal analytics
Final Use Case Apps

- **Use Case 1 – Morning Backups**
 - FCW
 - EEBL
 - ERD W

- **Use Case 2 – Wrong Way Entry**
 - WWE
 - Note while IMA could occur in this Use Case area, it was not the focus of this Use Case
FINAL USE CASE APPS

- Use Case 3 – Pedestrian Safety
 - PCW
 - Note: While FCW and IMA could occur in this Use Case area, it was not the focus of the Use Case.
- Use Case 4 – Transit Priority
 - TSP
 - IMA
FINAL USE CASE APPS

- Use Case 5 – Streetcar Conflicts
 - VTRFTV
- Use Case 6 – Traffic Progression
 - I-SIG
 - IMA
THEA CV Pilot Deployment Performance Results

Sisinnio Concas, Ph.D.
Achilleas Kourtellis, Ph.D.
Mohsen Kamrani, Ph.D.

Center for Urban Transportation Research, University of South Florida
Main Goals

- Develop and implement Performance Measurement and Evaluation Support Plan (PMESP)
- Data Collection
- Data Sharing with USDOT and Independent Evaluators
- Develop CV Pilot Dashboard
- Final Impact Assessment
<table>
<thead>
<tr>
<th>Pillars</th>
<th>Performance Measures</th>
<th>UC1 Morning Backups</th>
<th>UC2 Wrong-Way Entries</th>
<th>UC3 Pedestrian Safety</th>
<th>UC4 Transit Signal Priority</th>
<th>UC5 Streetcar Conflicts</th>
<th>UC6 Traffic Progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
<td>Travel time</td>
<td>P/A</td>
<td>P</td>
<td></td>
<td>P</td>
<td></td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Travel time reliability</td>
<td>P/A</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Queue length</td>
<td>P/A</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Vehicle delay</td>
<td>P</td>
<td>P</td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Percent (%) arrival on green</td>
<td>P</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Bus travel time</td>
<td>P</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Bus route travel-time reliability</td>
<td>P</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Percent (%) arrival on schedule</td>
<td>P</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Excess time spent in idle</td>
<td>P/A</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Safety</td>
<td>Crash comparison</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Types of crashes</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Severity of crashes</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Type of conflicts</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Severity of conflicts</td>
<td>P</td>
<td>P</td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Approaching vehicle speed</td>
<td>P</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>No. of alerts from apps</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td></td>
<td>P/A</td>
</tr>
<tr>
<td>Environmental</td>
<td>Emissions reductions in idle</td>
<td>P</td>
<td>P</td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Emissions reductions in running</td>
<td>P</td>
<td>P</td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Agency Efficiency</td>
<td>Mobility improvements through the mobility pillar analysis</td>
<td>P/A</td>
<td>P/A</td>
<td></td>
<td>P</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Safety improvements through the safety pillar analysis</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td></td>
<td>P/A</td>
</tr>
<tr>
<td></td>
<td>Customer satisfaction through opinion survey and/or CV app feedback</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td>P/A</td>
<td></td>
<td>P/A</td>
</tr>
</tbody>
</table>

P = Planned, A = Actual
Participants exposed to HMI via experimental design:

- Treatment (HMI on)
- Control (HMI off, stealth mode data collection)
- Group Assignment
 - ~ 2 to 1 match stratified by sex, age, income, education
 - 1,012 participants
 - Treatment = 621
 - Control = 391
PERFORMANCE MEASUREMENT DASHBOARD

- 16+ Billion observations database
- Multiple stakeholders
- USDOT management
- USDOT analysts
- Independent evaluators
- Near-real time reporting
- Downloadable reports
- Custom queries
- V2V and V2I false positive assessment
- Overall impact evaluation
DATA MANAGEMENT & SHARING

- CUTR Dedicated servers
- Database development (CV and non-CV Data)
- 24/7 Batch-uploading to USDOT Secure Data Commons (SDC) and ITS Public Data Hub
- Data parsing, repackaging, sanitization
- OBU vendor support to application development and testing
Regression modeling

\[Y_t = \beta_0 + \beta_1 T_t + \beta_2 X_t + \beta_3 X_t T_t + \beta_4 Z_t + \epsilon_t \]

- \(Y_t \) is the outcome variable (mean travel time),
- \(X_t \) represents ERDW intervention (pre-intervention period is 0, otherwise 1),
- \(T_t \) is time measuring days over the analysis period,
- \(X_t T_t \) is an interaction term,
- \(Z_t \) is a vector of controls for confounding factors (e.g., weather).
SAFETY ANALYSIS - METHODOLOGY

- **Adopting Four Terms:**
 - True Positive (TP) – An instance of a warning issued when there is a conflict
 - True Negative (TN) – An instance of NO warning issued when there is NOT a conflict (i.e., normal conditions)
 - False Positive (FP) – An instance of a warning issued when there is NOT a conflict
 - False Negative (FN) – An instance of a warning not issued when there is a conflict
SAFETY ANALYSIS - METHODOLOGY

Step 1
FP and TP Analysis
- OBU Data Logs to analyze warnings
- Identify the warning sequence and unique events
- 30-second before/after warning event profile assessment
- Identify FP and TP

Step 2
TN and FN Analysis
- RSU BSMs for HV-RV interaction count assessment
- Identify unique HV-RV interactions and potential conflicts
- 30-second before/after potential conflicts profile assessment
- Identify TN and FN

Step 3
True Conflict Analysis
- Use Step 1 and Step 2 output to estimate FP, FN, TP, and TN rates
- Identify factors affecting the analysis
- Identify and analyze reactions to warnings
Developed data-driven method to detect and identify reaction based on acceleration and yaw rate*

Identification of reaction before and/or after the moment of warning

Applications Deployed:
- End of Ramp Deceleration Warning (ERDW)
- Forward Collision Warning (FCW)
- Electronic Emergency Brake Light (EEBL)
- I-SIG (not successfully deployed)

Overall Analysis Period:
- 2/2019 - 3/2020*

* On March 20th, 2020, the REL was set to the eastbound direction 24/7, no westbound travel into Tampa
UC1: MOBILITY ANALYSIS

- Replication of RSU queue length estimation
- V2I app speed harmonization assessment
- Before/after interrupted time-series analysis
The ERDW contributed to:

- 2.1 percent reduction in mean travel times
- 1.8 percent reduction in idle time or time spent traveling at less than one mile per hour
- 1.8 percent reduction in queue length
- A travel time index reduction from 2.7 to 1.9
UC1: Safety Analysis Results

FCW and EEBL Movement Classifications and Rates

<table>
<thead>
<tr>
<th>Warning</th>
<th>Description</th>
<th>Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCW</td>
<td>Number of warnings (TP + FP + Not tested)</td>
<td>150</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>V2V interactions</td>
<td>12,450</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Conflicts</td>
<td>77</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>True Positives (TP)</td>
<td>9</td>
<td>11.7%</td>
</tr>
<tr>
<td></td>
<td>False Negatives (FN)</td>
<td>68</td>
<td>88.3%</td>
</tr>
<tr>
<td></td>
<td>Non-conflicts</td>
<td>12,373</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>True Negatives (TN)</td>
<td>12,241</td>
<td>98.9%</td>
</tr>
<tr>
<td></td>
<td>False Positives (FP)</td>
<td>132</td>
<td>1.1%</td>
</tr>
<tr>
<td>EEBL</td>
<td>Number of warnings (TP + FP)</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>V2V interactions</td>
<td>4,955</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Conflicts</td>
<td>43</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>True Positives (TP)</td>
<td>1</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td>False Negatives (FP)</td>
<td>42</td>
<td>97.7%</td>
</tr>
<tr>
<td></td>
<td>Non-conflicts</td>
<td>4,912</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>True Negatives (TN)</td>
<td>4,909</td>
<td>99.9%</td>
</tr>
<tr>
<td></td>
<td>False Positives (FP)</td>
<td>3</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
UC1: DRIVER REACTION TO FCW AND ERDW

Percent of drivers who reacted after warning

FCW (HMI Enabled)

ERDW (HMI Enabled)
UC1: LESSONS LEARNED

Mobility
- Changes in lane queue calculation method resulted in evaluation period of less than 2 months
- Need to be prepared to implement changes at a fast pace to deploy solution in a timely manner
- ERDW can be tuned to deliver less FPs according to vehicle speed

Safety
- Curvature of REL resulted in high number of FPs for FCW and EEBL due to inability to correctly determine RV lane ahead of HV
- Issues with GPS shift due to urban infrastructure (overpasses/high buildings)
Application Deployed:
- Wrong Way Entry (WWE)
- At the entrance to the Reversible Express Lanes (REL) of the Selmon Expressway

Analysis Period:

<table>
<thead>
<tr>
<th>REL Operation</th>
<th>Total WWE Warnings</th>
<th>Unique WWE Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL Westbound AM (6:00 to 9:59)</td>
<td>906</td>
<td>687</td>
</tr>
<tr>
<td>REL Eastbound PM (3:00 to 11:59)</td>
<td>5,070</td>
<td>4,137</td>
</tr>
<tr>
<td>Total</td>
<td>5,976</td>
<td>4,824</td>
</tr>
</tbody>
</table>
UC2: AM OPERATION (6:00 AM – 9:59 AM)

- REL in westbound direction
- Multiple WWE for a unique turning movement (event)
 - Do not enter
 - Wrong way
 - No travel

<table>
<thead>
<tr>
<th>Description</th>
<th>WWE</th>
<th>Unique WWE events</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL to Twiggs Westbound</td>
<td>882</td>
<td>665</td>
</tr>
<tr>
<td>Other</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>906</td>
<td>687</td>
</tr>
</tbody>
</table>
UC2: AM WWE EVENTS TURNING MOVEMENTS

REL Westbound to Twiggs St

All Other Directions
UC2: OBSERVED FALSE POSITIVES - AM

Zero vehicle heading (traveling south)

MAP Allowed Lanes and WWE Events
- REL is in Eastbound Direction
- Some participants expected to enter the wrong way (as a shortcut)

<table>
<thead>
<tr>
<th>Movement</th>
<th>WWE Warnings</th>
<th>Unique WWE Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Twiggs St. to REL Eastbound</td>
<td>2,033</td>
<td>1,310</td>
</tr>
<tr>
<td>E. Twiggs to REL Eastbound</td>
<td>145</td>
<td>139</td>
</tr>
<tr>
<td>N. Meridian Ave to REL Eastbound</td>
<td>2,434</td>
<td>2,279</td>
</tr>
<tr>
<td>Other*</td>
<td>458</td>
<td>409</td>
</tr>
<tr>
<td>Total</td>
<td>5,070</td>
<td>4,137</td>
</tr>
</tbody>
</table>

UC2: PM Movement Analysis – Twiggs St. to REL EB

<table>
<thead>
<tr>
<th>Movement Type</th>
<th>Arrow Color</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed – WWE Not Expected</td>
<td>Green</td>
<td>Allowed – WWE Not Expected</td>
</tr>
<tr>
<td>Allowed – WWE Not Expected</td>
<td>Blue</td>
<td>Allowed – WWE Not Expected</td>
</tr>
<tr>
<td>Not Allowed – WWE Expected</td>
<td>Yellow</td>
<td>GPS Signal Drift; potential False Positive</td>
</tr>
<tr>
<td>Not Allowed – WWE Expected</td>
<td>Red</td>
<td>Potential True Positive; 18 observed</td>
</tr>
</tbody>
</table>

Unique WWE events
(with one or more WWE warnings)
UC2: Meridian Ave. to REL Eastbound

<table>
<thead>
<tr>
<th>Movement Type</th>
<th>Arrow Color</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed – WWE</td>
<td>Green</td>
<td>Not Expected</td>
</tr>
<tr>
<td>Allowed – WWE</td>
<td>Blue</td>
<td>GPS Signal Drift</td>
</tr>
<tr>
<td>Not Allowed – WWE</td>
<td>Yellow</td>
<td>GPS Signal Drift</td>
</tr>
<tr>
<td>Not Allowed – WWE</td>
<td>Red</td>
<td>Potential True Positive; 1 observed</td>
</tr>
</tbody>
</table>

![Diagram of traffic signals and directions]
UC2: LESSONS LEARNED

- WWE application warnings need fine tuning
 - Estimating the trajectory of the vehicle correctly is a challenge
 - Issues FP “Do not Enter” warnings
 - Suggest revising “Do not Enter”
- Impact of pre-warning in preventing WWE is unknown
- Loss of vehicle heading while stopped causes the application to wrongly issue FP warnings – All AM events
- GPS signal drift leads to FP warnings mistakenly taken as entering in the wrong side of the road
Deployed Pedestrian Collision Warning (PCW)

Analysis Periods:
- 3/2019 – 10/2019: pedestrian system utilizing LiDAR sensors

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCW (TP + FP + Not tested)</td>
<td>87</td>
<td>--</td>
</tr>
<tr>
<td>Not tested</td>
<td>8</td>
<td>9.2%</td>
</tr>
<tr>
<td>False Positives</td>
<td>63</td>
<td>72.4%</td>
</tr>
<tr>
<td>True Positives</td>
<td>16</td>
<td>18.4%</td>
</tr>
</tbody>
</table>
UC3: OBSERVED PCW FALSE POSITIVES

Warnings issued when pedestrians are standing on sidewalk

Warnings issued when pedestrians have completed their crossing
Application needs fine tuning to confirm warning is issued when pedestrians in the crosswalk, not sidewalk

Have a plan B in case of equipment failure requiring a change of deployment technology

Note: Data collection ongoing as part of Phase 4
UC4: Transit Signal Priority

- Three fixed routes selected for deployment
- TSP not successfully deployed in the evaluation period
- No evaluation feasible
- Continued improvements expected during Phase 4
UC5: STREETCAR CONFLICTS

- Deployed Vehicle Turning in Front of Transit Vehicle (VTRFTV)

Analysis period: 3/2019 – 8/2020

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTRFTV Unique Events (TP + FP)</td>
<td>34</td>
<td>--</td>
</tr>
<tr>
<td>V2V Interactions</td>
<td>7,167</td>
<td>--</td>
</tr>
<tr>
<td>Conflicts</td>
<td>64</td>
<td>--</td>
</tr>
<tr>
<td>True Positives (TP)</td>
<td>4</td>
<td>6.2%</td>
</tr>
<tr>
<td>False Negatives (FN)</td>
<td>60</td>
<td>93.8%</td>
</tr>
<tr>
<td>Non-conflicts</td>
<td>7,103</td>
<td>--</td>
</tr>
<tr>
<td>True Negatives (TN)</td>
<td>7,073</td>
<td>99.6%</td>
</tr>
<tr>
<td>False Positives (FP)</td>
<td>30</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
Application receives BSMs from surrounding vehicles
Application determined collision trajectory
Application issues warning to vehicle and transit vehicle

Source: System Architecture Document, Publication FHWA-JPO-17-459
Vehicle and streetcar traveling in opposite direction

Vehicle and streetcar traveling in same direction but not in adjacent lanes

Vehicle and streetcar traveling at different elevations
UC5: LESSONS LEARNED

- VTRFTV application needs fine tuning to correctly determine the trajectory of the vehicle in relation to the streetcar
- Parameters need fine tuning for elevation difference

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTRFTV Unique Events (TP + FP)</td>
<td>34</td>
<td>--</td>
</tr>
<tr>
<td>V2V Interactions</td>
<td>7,167</td>
<td>--</td>
</tr>
<tr>
<td>Conflicts</td>
<td>64</td>
<td>--</td>
</tr>
<tr>
<td>True Positives (TP)</td>
<td>4</td>
<td>6.2</td>
</tr>
<tr>
<td>False Negatives (FN)</td>
<td>60</td>
<td>93.8</td>
</tr>
<tr>
<td>Non-conflicts</td>
<td>7,103</td>
<td>--</td>
</tr>
<tr>
<td>True Negatives (TN)</td>
<td>7,073</td>
<td>99.6</td>
</tr>
<tr>
<td>False Positives (FP)</td>
<td>30</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Applications Deployed:
- Forward Collision Warning (FCW)
- Electronic Emergency Brake Light (EEBL)
- Intersection Movement Assist (IMA)
- I-SIG (not successfully deployed to participants)

Analysis Period: 5/2018 - 8/2020
- AM period: 6 – 10am
- PM period: 3 – 7pm
UC6: Mobility Analysis

- Mobility impacts could not be assessed due to unsuccessful deployment of I-SIG
- Baseline data collection useful to conduct COVID impact analysis

March 20th, COVID-19

Travel Time 10 Min Interval – AM Peak

Travel Time 10 Min Interval – PM Peak
UC6: Safety Analysis – FCW

<table>
<thead>
<tr>
<th>Description</th>
<th>AM Period</th>
<th>PM Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time spent in area (hours)</td>
<td>Count</td>
<td>Rate</td>
</tr>
<tr>
<td>FCW (TP + FP)</td>
<td>38</td>
<td>--</td>
</tr>
<tr>
<td>V2V interactions</td>
<td>3,237</td>
<td>--</td>
</tr>
<tr>
<td>Conflicts</td>
<td>85</td>
<td>--</td>
</tr>
<tr>
<td>True Positives</td>
<td>14</td>
<td>16.5%</td>
</tr>
<tr>
<td>False Negatives</td>
<td>71</td>
<td>83.5%</td>
</tr>
<tr>
<td>Non-conflicts</td>
<td>3,152</td>
<td>--</td>
</tr>
<tr>
<td>True Negatives</td>
<td>3,128</td>
<td>99.2%</td>
</tr>
<tr>
<td>False Positives</td>
<td>24</td>
<td>0.8%</td>
</tr>
</tbody>
</table>
UC6: Safety Analysis – EEBL

<table>
<thead>
<tr>
<th>Description</th>
<th>AM Period</th>
<th></th>
<th>PM Period</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count Rate</td>
<td>Count</td>
<td>Rate</td>
<td>Count</td>
<td>Rate</td>
</tr>
<tr>
<td>Time spent in area (hours)</td>
<td>282</td>
<td>--</td>
<td>278</td>
<td>--</td>
</tr>
<tr>
<td>EEBL (TP + FP)</td>
<td>6</td>
<td>--</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>V2V interactions</td>
<td>2,517</td>
<td>--</td>
<td>299</td>
<td>--</td>
</tr>
<tr>
<td>Conflicts</td>
<td>18</td>
<td>--</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>True Positives</td>
<td>3</td>
<td>16.7%</td>
<td>1</td>
<td>25.0%</td>
</tr>
<tr>
<td>False Negatives</td>
<td>15</td>
<td>83.3%</td>
<td>3</td>
<td>75.0%</td>
</tr>
<tr>
<td>Non-conflicts</td>
<td>2,499</td>
<td>--</td>
<td>295</td>
<td>--</td>
</tr>
<tr>
<td>True Negatives</td>
<td>2,496</td>
<td>99.9%</td>
<td>293</td>
<td>99.3%</td>
</tr>
<tr>
<td>False Positives</td>
<td>3</td>
<td>0.1%</td>
<td>2</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
UC6: Safety Analysis – IMA

<table>
<thead>
<tr>
<th>Description</th>
<th>AM Period</th>
<th></th>
<th>PM Period</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Spent in Area (Hours)</td>
<td>282</td>
<td>--</td>
<td>278</td>
<td>--</td>
</tr>
<tr>
<td>Number of Vehicles</td>
<td>450</td>
<td>--</td>
<td>452</td>
<td>--</td>
</tr>
<tr>
<td>IMA (TP + FP + Not tested)</td>
<td>16</td>
<td>--</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>V2V Interactions</td>
<td>8,490</td>
<td>--</td>
<td>4,023</td>
<td>--</td>
</tr>
<tr>
<td>Conflicts</td>
<td>1</td>
<td>--</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td>True Positives</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>False Negatives</td>
<td>1</td>
<td>100.0%</td>
<td>5</td>
<td>100.0%</td>
</tr>
<tr>
<td>Non-conflicts</td>
<td>8,489</td>
<td>--</td>
<td>4,018</td>
<td>--</td>
</tr>
<tr>
<td>True Negatives</td>
<td>8,473</td>
<td>99.8%</td>
<td>4,006</td>
<td>99.7%</td>
</tr>
<tr>
<td>False Positives</td>
<td>16</td>
<td>0.2%</td>
<td>12</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

![Map of the area with traffic patterns](map.png)
UC6: OBSERVED IMA FALSE POSITIVES

Incorrect Veh Orientation

Large distance between HV-RV

No intersection between HV-RV
UC6: REACTION TO WARNINGS

- No visible True Positives for EEBL
- Drivers might react to traffic conditions instead of issued warning(s)

Drivers reacting to FCW and EEBL with HMI enabled
CV Technology

- The broadcasting of speed advisories via the ERDW application contributed to mobility improvements compared with the baseline conditions.

- The safety evaluation uncovered heterogeneity in how the V2V and V2I applications contributed towards improved safety based on the use case being evaluated.
 - In UC6 the three applications issued 26 warnings which could have a significant effect in reducing crashes for the corridor.

- Lessons learned consider application-specific issues that can be resolved by improving the currently deployed OBU firmware with further research and development.
Participants Feedback

- About two thirds of the participants were satisfied with the study’s participation
- Perceived benefits
 - Safety (66%)
 - Reduced congestion (56%)
 - Less stressful commute (54%)
- Before entering the study, about 46 percent expressed concerns about the impact of CV technology on their privacy. These concerns decreased to 29 percent towards the end of the study.
CV Application Development

- Fine tuning of V2V and V2I application parameters needs to be fast and effective to quickly resolve issues
- Urban environment (tall buildings, overpasses) creates GPS accuracy challenges
- Some applications were not as mature as initially thought (TSP and I-SIG)
Connected Vehicle Real-World Test Site (CVRTS)

Steve Novosad
THEA CV Pilot System Engineering Lead, HNTB
THEA CV PILOT PHASE 4

- Integration of Original Equipment Manufacturers (OEMs)
- Support United States Department of Transportation (USDOT) spectrum interference testing
- Implement Spectrum Interference Testing System (SPITS)
Integration of OEMs

- Partnered with Honda, Hyundai, and Toyota
- Implementing 6 CV Pilot Apps
 - FCW
 - EEBL
 - ERDW
 - PCW
 - WWE
 - IMA
- Developing 1 New App
 - RLVW
INTEGRATION OF OEMS

- Denso chosen by OEMs as OBU provider
- Goal to Install in OEM customer’s vehicles
 - Honda – 75
 - Hyundai – 75
 - Toyota – 50
- Existing Participants receive upgraded OBU
 - 400
- Data
 - Continue to acquire and provide to USDOT
 - Will contain OEM “Sniffed” BSMs at a minimum
Support USDOT Spectrum Interference Testing

- Provide access to USDOT test teams in the CV Pilot area
- Support testing of the USDOT test teams
- Provide access to Spectrum Interference Test System (SPITS)
SPECTRUM INTERFERENCE TEST SYSTEM (SPITS)

- Capability to broadcast
 - Dedicated Short Range Communications (DSRC)
 - Cellular Vehicle to Everything (C-V2X)
 - Unlicensed Wifi
- Created a test plan for device testing
- Coordinating test plans with USDOT Spectrum team
- Will be available to device manufacturers and other entities for testing
DEPLOYMENT LOCATION

SPITS Location
THEA Perspective on CV Pilot Deployment

Bob Frey
Director of Planning and Innovation, THEA
Stay Connected

Contact for CV Pilots Program/Site AORs:

- Kate Hartman, Program Manager, Wyoming DOT Site AOR; Kate.Hartman@dot.gov
- Jonathan Walker, NYCDOT Site and Tampa (THEA) Phases 4 AOR; Jonathan.b.Walker@dot.gov
- Govind Vadakpat, Tampa (THEA) Phases 1-3 AOR; G.Vadakpat@dot.gov
- Walter During, Evaluation COR, Walter.During@dot.gov

Visit CV Pilot and Pilot Site Websites for more Information:

- CV Pilots Program: http://www.its.dot.gov/pilots
- NYCDOT Pilot: https://www.cvp.nyc/
- Tampa (THEA): https://www.tampacvpilot.com/
- Wyoming DOT: https://wydotcvp.wyoroad.info/