PROJECT VISION AND OBJECTIVES

To develop tools and practices that manage privacy risk while maintaining the utility of ITS data for research and development of innovative applications that improve safety, mobility, and environmental protection.

OBJECTIVES

• Improve Public Understanding of Geolocation Privacy
• Identify Privacy Weaknesses and Develop Solutions
• Collaborate with ITS Deployers to Build Capabilities

Photo Source: USDOT
TRANSPORTATION DATA HAS VALUE

- Mobility applications and location-based services
- Driving safety and advanced driving systems
- Product improvement
- Situational awareness: traffic, navigation, routing
- Traffic management

Sharing data allows more people to perform research, innovate, and meet open data requirements
GEOLOCATION, MOBILITY, LINKED SOURCES, AND PRIVACY

• People consider presence and absence at certain locations sensitive. Some sensitive locations also have value to analysts.

• Linking datasets may introduce problems that did not exist in the separate datasets.

• Limiting collection to areas that exclude sensitive locations can help. Providing useful summary information may also mitigate problems.
UNDERSTANDING PRIVACY AND OUR DATA IS ESSENTIAL TO MANAGING RISKS

Information privacy is defined in many ways...

Control over information about ourselves [1]
Conditions that deprive other’s access to information about you [2]

Privacy language and risk mitigation is evolving... [3]

Identifying Information,
Personal Information,
Anonymization,
De-Identification,
Re-Identification

To mitigate privacy risk we must understand the characteristics that make our data personal and identifying

PRIVACY PROTECTION IS “DESIGNED INTO” ITS DATA SPECIFICATIONS

But, ordering and collecting data may present unanticipated challenges.

Individual locations present minimal privacy risk
PRIVACY PROTECTION IS “DESIGNED INTO” ITS DATA SPECIFICATIONS

But, ordering and collecting data may present unanticipated challenges.

Risk is increased when data can be ordered
PRIVACY PROTECTION IS “DESIGNED INTO” ITS DATA SPECIFICATIONS (cont.)

But, ordering and collecting data may present unanticipated challenges.

Risk is further increased when data is ordered and aggregated

Examples:
• Learning the route a person takes to get home
• Learning how many stop signs a person “rolls through”
• Learning when a person’s home is likely vacant throughout the week
• Learning when a business’s operational tempo changes
CHALLENGES, CONSIDERATIONS, AND CURRENT APPROACHES

- Perspectives on what makes a location private are subjective
- Open source information aids re-identification efforts
- Once data is released, it is hard to recall
- How data is used dictates location and time fidelity requirements
 - Safety and traffic application development require precise data
- Location privacy algorithms modify or eliminate original data
 - Summarize, reposition, reduce fidelity, remove records

Risk, Protection, and Utility Requirements should be Balanced
WE MANAGE LOCATION PRIVACY RISK BY IDENTIFYING SENSITIVE LOCATIONS AND HIDING THEM

1. **Identify** privacy-sensitive locations/behavior using trip and map features
 - Loitering behavior (where we stop)

2. **Remove** enough data to hide sensitive locations
 - Improve results using relevant external data
 - Incorporate data privacy strategies proven in other areas
 - k-Anonymity [8,9], Information Theory [10]

Two tools have been developed that apply this approach to different data contexts:

- **Privacy Protection Algorithm (PPA)**
- **Privacy Protection Module (PPM)**

[9] k-secure path: Hiding Sequential and Spatiotemporal Patterns; Abul, Bonchi, Giannotti; 2010
[10] A Mathematical Theory of Communication; Claude E. Shannon; 1948
PRIVACY PROTECTION
ALGORITHM:

A Tool for Trip Databases
DRIVING BEHAVIOR AND MAP INFORMATION ARE USED TO IDENTIFY SENSITIVE LOCATIONS

• We classify driving behavior (many points) in conjunction with where it occurs
 - Rule 1: Trip begin and end points are assumed sensitive
 - Rule 2: Stops at certain locations
 - Rule 3: Turnaround or drop-off behavior

• Road proximity, road type, and area type help make decisions
 - Example: Stops on interstates are not sensitive
 - Example: Stops at a traffic light are not sensitive
ASSOCIATING GEOLOCATIONS WITH ROADS PROVIDES INFORMATION USEFUL FOR PRIVACY PROTECTION

- Time-ordered locations with heading and speed only provide part of the picture

- To use this information, locations must be “matched” to road segments
 - Each trip point can be labeled with data from its “matched” road
 - Location measurements can be corrected
 - Off-road driving can be detected
 - Intersection pass-through can be determined.
LEARNING SOMEONE’S DESTINATION BY REDUCING POSSIBILITIES

- As we approach a destination, the number of possible alternative destinations decreases.
- We reverse this process to hide sensitive locations.
HOW WE HIDE SENSITIVE LOCATIONS USING THE ROAD NETWORK

... A MEASURABLE WAY TO HIDE A SENSITIVE LOCATION INDEPENDENT OF DISTANCE!
ALTERNATIVES FOR PRIORITIZING DATA RETENTION

• Distances from sensitive locations can be used to maximize data retention, if desired

• Data retention parameters may preempt privacy protection parameters

Stop removing data when the “along-the-road” distance reaches a prescribed value.

Stop removing data when the “over-the-ground” distance reaches a prescribed value.

A random amount of additional removal can be applied.
PRIVACY PROTECTION ALGORITHM (PPA): A TOOL FOR LARGE MOVING OBJECT DATABASES

• Used to open source Ann Arbor Safety Pilot data
 - ~460,000 trips
• User-friendly interface
• Well documented, highly configurable
• Uses OpenStreetMap data (free)
• Optional annotated KML output for visual inspection of results
• Input and output data is comma-separated values (CSV)
 - Required fields: Latitude, Longitude, Time, Heading, Speed
 - Additional fields are retained in output
PRIVACY PROTECTION MODULE:

A Tool for Streaming Data
PROTECTING A HIGH-SPEED, LOW-DENSITY INTERSTATE

- Streaming data applications present unique privacy protection challenges.
- Geofencing: Identify and isolate a known, irregular area.
 - Locations are classified as outside or inside the fence in real time.
 - Additional filters can be applied: low and high speeds, vehicle dimensions, identifiers.
PRIVACY PROTECTION MODULE (PPM): A TOOL FOR STREAMING LOCATION DATA

• Developed using Agile practices for the WYDOT Safety Pilot
• Example of application-specific privacy protection
• A standalone capability that integrates with the Operational Data Environment (ODE)
• Handles multiple J2735 message types that contain location information
• All code and documentation is open source code - https://github.com/usdot-jpo-ode
EVALUATING THE METHOD
HOW WELL ARE WE MANAGING PRIVACY RISK? AND, DOES THE DATA REMAIN USEFUL?

• Privacy Vetting by Independent Teams
 - No successful re-identifications
 - Incorrect claims of driver identity remain a possibility

• Processed data remains useful in many scenarios
 - Independent evaluation
 - Highway Mix Zone Analysis
 - Intersection Analysis
ADDITIONAL WORK
WORK IN PROGRESS

• Continued advancement of geolocation privacy tools
• Application-specific approaches to geolocation privacy
• Measuring data utility in relation to privacy protection
• Quantitative evaluation of privacy designs
JOIN THIS EFFORT

• We want to understand your ITS data privacy concerns and help you address them!
• Contact us for help and questions:

Ariel Gold
Data Program Manager
(202) 366-4374
ariel.gold@dot.gov

Jason M. Carter
Principal Investigator, ORNL
(865) 574-1480
carterjm@ornl.gov