Security and Privacy
Understanding the Prototype
V2V Safety Security Design

Public Workshop: Enabling a Secure Environment for
Vehicle-to-Vehicle and Vehicle-to-Infrastructure
Transactions

April 19 – 20, 2012

Tom Schaffnit
VII Consortium (VIIC) – Who we are

- Industry consortium (Michigan 501 (c6) non-profit) consists of nine light-duty vehicle manufactures.
The Connected Vehicle initiative encompasses a wide range of evolving technologies developed by many government, industry, and academic partners. The VIIC is primarily focused on deployment of cooperative safety and mobility applications based on 5.9 GHz DSRC.
Vehicle Connectivity

DSRC communications among vehicles, devices and roadways
Key Enabler – Security

Messages to/from other vehicles, devices and the Infrastructure must be trustworthy

- Autonomous vehicle safety applications depend upon sensor data from within the same vehicle
- Cooperative safety and mobility applications depend upon data from other vehicles, other off-board devices and from the infrastructure
- This data must be trustworthy in order for a cooperative system to work
Why We Need Security

The receiver of a message is not able to determine, without additional mechanisms, whether

- a message originates from a trustworthy and legitimate device, and whether
- the message was modified between sender and receiver

Devices found to be transmitting “bad” messages need to be removed from the system until repaired or replaced:

- defective devices
- hacked devices
VIIC Policy Goals for V2V Security

- Anonymity for mandatory services
- Non-Trackability for mandatory services
- Protection from Attacks on System Integrity
- Prevention of Unauthorized Access to Personally Identifiable Information (PII)
- No User Fees for mandatory services
- Stable, Long-term Policy and Technology with backward compatibility (decades rather than years)
Security System Scope & Limitations

The following slides describe a prototype security system designed by the Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications 3 Consortium as part of cooperative projects with the USDOT for V2V safety applications:

- It has not been designed for nor has it been analyzed for applicability to V2I safety applications or non-safety applications that are part of the wider connected vehicle and infrastructure deployment scenario

- Additional security requirements for full deployment need to be analyzed and developed
What is a PKI?

1. Issue certificate and private key
2. Sign message (using private key) and send signature, message & certificate
3. Verify certificate (using CA’s public key) and message (using certificate’s public key)
Analysis of PKI

- **Communication Channel from Vehicles to SCMS**
 - Goal: Report Certificates That Are Being Used to Send ‘Bad’ Messages (Bad Sensor Data or Malicious Data)
- **Communication Channel from SCMS to Vehicles**
 - Goal: Update Vehicles with New Certificate Revocation List
 - Goal: Issue New Certificates

Security Infrastructure – PKI
- Revocation of certificates
- Issue and renewal of certificates

Communication Channel
- DSRC channel
Security Design Balance

Safety

Privacy

Security
Split SCMS Overview

- RA: Registration Authority
- CA: Certificate Authority
- LA: Linkage Authority
Issuing Certificates: RA & CA

- RA is the point of contact for an OBE
- RA shuffles OBE’s requests (over all OBEs and all requests)
- CA issues certificates
Efficient Revocation: LAs

- Each OBE will receive thousands of certificates per year
 - Traditional revocation (include each certificate identifier in CRL) impossible: huge CRLs
- Include a “Linkage ID” in each certificate
 - Basically an decrypted identifier
 - To revoke: include decryption key on CRL
 - Smart design: publishing decryption key on CRL allows OBEs to derive any future Linkage ID but no past Linkage ID
Split Certificate Management Authority

- RA(s) *knows who requested certificates*, but does not know *what* is in the certificates.
- CA *knows certificate content*, but does not know *who* requested certificates.
- LA(s) *knows the linkage IDs*, but does not know *who* requested the certificates.
Communication Mechanisms for the Connected Vehicle System

1) Vehicles communicating with other vehicles in a secure manner

- **Reasons to communicate w/RA:**
 1. Obtain new certificates or decryption keys for onboard certificates
 2. Vehicle misbehavior reporting
 3. Obtain Certificate Revocation List

2) Vehicles and RA communicating in a secure manner

- **TBD:** DSRC, Cellular, Wi-Fi, etc

3) Communication with Registration Authority (RA)

- **Linkage Authority (LA)**
- **Certificate Authority (CA)**
Key Questions for Further Study

Can a V2V security solution for a mandated system with no reliance on public funding be identified that:

- Meets the technical requirements,
- Meets the policy goals to an acceptable degree, and
- Has a viable business case

For communication networks, further study will consider:

- Cellular
- DSRC
- Other potential networks that are identified
- Potential combinations of two or more networks

And other policy issues, such as governance, privacy, liability, etc.
Thank You