Applications and Data Environments Breakout

Group II: Freeway Data Environment

Gene McHale
Federal Highway Administration
Office of Operations Research and Development

Kate Hartman
ITS Joint Program Office

Mike McGurrin
Noblis

Mobility and Environment Workshop - November 30, 2010
Today’s Exercise
(Part 1) Scorecards

• Feedback materials provided in the breakout rooms
 – Application scorecards
 – 3 poker chips (for voting)
• Facilitators will brief assumptions about the data environment that applications can draw upon
• Facilitators will clarify application evaluation criteria
• Consider a set of (up to 12) IntelliDrive application concepts
 – Facilitators provide one slide that describes the application
 – Field questions and clarifying discussion
 – Individually, you rate the application (HIGH, MEDIUM, LOW) against the criteria on your scorecard
Today’s Exercise (Part 2) Voting

- Once you have scored each application, each participant votes for the three most promising applications
 - **“Most promising”**: strong potential for transformative impact, low deployment risk, and clear alignment with IntelliDrive program goals
 - BLUE = 3 points (top priority)
 - RED = 2 points (second-highest priority)
 - WHITE = 1 point (third-highest priority)
 - Deposit your chips in the voting bins identified for each application (also turn in your scorecards)
- Quick break (5 minutes) to tabulate the results
- Reconvene to consider results within each breakout
 - Discuss the implications of your group process
 - Identify a presenter from your group for the breakout report at 3 PM
Exercise Ground Rules

• For today’s exercise, these items can’t be changed
 – Evaluation criteria
 – Data Environment assumptions
 – Application concepts (no altering or adding new ones)
• Policy-related issues are NOT in play for discussion
 – If these topics come up, we will park the discussion until tomorrow, when we have special session to deal with these in turn
Data Environment Assessment
Scorecard Activity
Freeway Data Environment Description

- Organizes multi-source data along a uninterrupted flow (freeway) facility up to 15 miles in length
 - Vehicles (light, transit, freight, non-motorized, public safety)
 - Mobile devices
 - Roadside/wayside infrastructure
- Federated with related data environments
 - Can pull in federated data to assist in local control decisions
Freeway Data Environment Assumptions

• Single freeway facility, bi-directional in nature
• Data environment encompasses data from all interchanges along the facility, including ramps and arterial segments providing ramp access
• Lanes on the mainline facility may have access restrictions that may vary by time of day and day of week (e.g., HOV or Truck Only)
• Tolls may be collected on some or all lanes along the length of the facility
• Travel demand is highly variable by time of day and day of week
• Periods of high traffic demand associated with events held at venues along the facility
• Some sections of the freeway may experience partial or complete flooding during intense rain events
Vehicle and Traveler Data Source Assumptions

- Nearly all travelers carry GPS-enabled mobile devices
- Some travelers opt-in to configure their mobile devices to contribute data regarding position, time and trip characteristics
- Many light vehicles opt-in to contribute data, some broadcast HIA messages
- Many transit vehicles contribute position, passenger count, and other data, some broadcast HIA
- Many freight vehicles provide data on position, credentials and other data, some broadcast HIA
- Most emergency vehicles broadcast HIA and vehicle type data
Infrastructure
Data Source Assumptions

- Road Weather sensors, loop detectors, other roadside sensors as currently deployed (2010 baseline)
- Many signalized intersections act as advanced intersections
 - DSRC-capable roadside equipment for 2-way communication with enabled devices and vehicles
 - Broadcast Signal Phase and Timing (SPaT) data via DSRC
- Some transit and curbside parking facilities provide utilization data (spaces used/remaining), every minute
Application Assessment Scorecard Activity
Application Evaluation

Criteria

• Next, we’re going to go through application concepts that utilize data from the freeway data environment

• We will present each concept on a single slide
 – You can ask clarifying questions, or offer suggestions about how data might be leveraged
 – But the concept itself cannot be altered, modified or enhanced in discussion
 – Please record notes or comments on each concept on your scorecard

• You rate each application on three criteria (High, Medium, Low)
 – Potential Impact: will this application have transformative impact?
 – Deployment Readiness: if we assume the data is available, can this application be developed, tested and widely deployed by 2025?
 – Program Alignment: does the application align with program objectives and is there a clear federal role in its development and deployment?
• Dynamic Speed Harmonization

• Problem Addressed:
 – Improve throughput and reduce risk of collision by optimizing for lane-specific speed limits on a freeway facility

• Description
 – Monitor traffic and weather data captured from multiple sources, and calculate a target speed for vehicles
 – Target speeds may be advisory or enforced, and may vary by location, e.g., distance upstream of a recurrent bottleneck, and by lane
 – Communicate target speeds through overhead dynamic signage, via DSRC to enabled vehicles with range (I2V) and from vehicle to vehicle (V2V)
Application #2: CACC

- Cooperative adaptive cruise control
- Problem Addressed:
 - Significantly improve throughput by increasing capacity and efficiency, and increase safety by minimizing the number of interactions between vehicles
- Description
 - A traffic manager sets a gap policy to form or break-up platoons of vehicles
 - Speeds are automatically adjusted by the vehicle based on communications from the traffic management center
 - Ad hoc or managed platoons of vehicles moving on the facility
 - Management of gaps, flows and arrival rates
 - Systematically accounts for differing vehicle weight and performance

PARTICIPANTS: ON YOUR SCORECARDS, PLEASE RECORD NOTES/COMMENTS – CRITERIA RATING
Application #3: Q-WARN

• Queue Warning

• Problem Addressed:
 – Warn motorists of existing or imminent downstream queues or shockwaves to increase safety by reducing rear-end collisions (and resulting congestion)

• Description
 – Monitor traffic data to check for presence of a stopped or slow moving queue
 – Predict queue formation and shockwave propagation
 – Alert motorists to reduce speeds thereby avoiding abrupt stops
 – Possibly implemented in conjunction with speed harmonization to provide target speeds by lane in approach to congested area

PARTICIPANTS: ON YOUR SCORECARDS, PLEASE RECORD NOTES/COMMENTS – CRITERIA RATING
Multi-modal Real-Time Traveler Information

Problem Addressed:
- Improve precision and accuracy traveler information with respect to travel times, cost, or availability on alternate routes or modes

Description
- Considers real-time and historical travel conditions for the traveler’s trip (pre-specified origin, destination, and time of departure)
- Suggests potential routes and modes (e.g., HOV, general purpose, tolled lanes) with travel times, travel time reliability, and costs for each alternative
- Predicts travel times based on existing and expected traffic patterns, weather conditions, incident locations, and work zone locations and timings

PARTICIPANTS: ON YOUR SCORECARDS, PLEASE RECORD NOTES/COMMENTS – CRITERIA RATING
Application #5: ETC

• Electronic Toll Collection System

• Problem Addressed:
 – Increase interoperability among ETC devices for vehicle-to-roadside communication using 5.9 GHz bandwidth

• Description
 – Current 915 MHz ETC systems rely on proprietary vehicle-to-roadside communications, limiting interoperability
 – Enable toll authority to accept electronic payments from vehicles equipped with electronic-payment services (EPS), regardless of EPS account ownership
 – Presents payment instructions to the driver, receives driver input, send payment authorization and display toll payment status to the driver
 – Could be implemented in conjunction with managed or HOT lane concepts

PARTICIPANTS: ON YOUR SCORECARDS, PLEASE RECORD NOTES/COMMENTS – CRITERIA RATING
Application #6: INC-ZONE

- Incident Scene Work Zone Alerts for Drivers and Workers
- Problem Addressed:
 - Public safety work zones (e.g., incidents, traffic stops) are dynamic and confusing for drivers -- and are high risk areas for vehicle-worker collisions
- Description
 - Warns drivers of lane closings and unsafe speeds for the temporary work zones that surround any traffic incident or law enforcement traffic stop
 - In-vehicle messaging would also provide merging and speed guidance
 - Warn on-scene workers of vehicles with trajectories or speeds that pose high risk to their safety

PARTICIPANTS: ON YOUR SCORECARDS, PLEASE RECORD NOTES/COMMENTS – CRITERIA RATING
Application #7: RAMP

• IntelliDrive-Driven Ramp Metering System

• Problem Addressed:
 – Improve current ramp metering systems capability to respond to changing traffic conditions in real time

• Description
 – Leverage new mobile source data to calculate optimal ramp metering rates resulting in improved throughput and reduced emissions
 – Broadcast timing information (analogous to SPaT data) allowing vehicles to decelerate or accelerate
 – Integrate with HOV bypass, arterial signal coordination and dynamic speed harmonization applications deployed in same interchange

PARTICIPANTS: ON YOUR SCORECARDS, PLEASE RECORD NOTES/COMMENTS – CRITERIA RATING
Application #8: WX-MDSS

- **Enhanced MDSS Communications**
- **Problem Addressed:**
 - Reduce reliance on (potentially expensive) commercial wireless networks to communicate with snowplows or other maintenance vehicles
- **Description**
 - MDSS equipped maintenance vehicles utilize DSRC hot spots to download treatment recommendations and upload recent maintenance activities
 - In many rural areas access to commercial networks is limited and/or expensive
 - Utilize DSRC hot spots to reduce costs and improve communications latency for state DOTs

Participants: On your scorecards, please record notes/comments – criteria rating
Voting
Breakout Exercise (Part 2) Voting

• Now that we’ve worked through all the applications, vote for the three most promising applications
 – “Most promising”: strong potential for transformative impact, low deployment risk, and clear alignment with IntelliDrive program goals
 – BLUE = 3 points (top priority)
 – RED = 2 points (second-highest priority)
 – WHITE = 1 point (third-highest priority)
 – Deposit your chips in the voting bins identified for each application (also turn in your scorecards)
• We’ll take a quick break (5 minutes) to tabulate the results
• One Bin, One Participant, One Chip rule
 – Do NOT dump all of your chips in a single bin
 – We want your individual priority of the top THREE applications
Quick Break
Exercise Results
Results Discussion

• Were similar or dissimilar applications selected during voting?

• Did the highest ranking applications align in the same quadrants of the impact/deployment readiness chart?

• Regarding the top 6 applications:
 – Are they highly overlapping? Or independent?
 – Do they require coordinated research?
 – Will they require coordinated deployment?

• Who would like to volunteer to report out the breakout group findings?
Exercise Complete