Deploying Vehicle-Based Technologies
Considerations and Lessons Learned

Andy Alden
VA Tech Transportation Institute
aalden@vtti.vt.edu
Virginia Tech Transportation Institute (VTTI)

- Located near Virginia Tech in Blacksburg, Virginia
- Home to the Virginia Smart Road facility
- Virginia Tech’s largest research enterprise
- 300 staff members and students
- Nation’s 2nd largest Transportation Research Institute
- Approx. $30M Research funding (FY 2010)
VTTI Capabilities and Resources

• Expertise and experience
 – Driving data acquisition
 – Data storage, handling, analysis

• Facilities
 – Virginia Smart Road
 – The Instrumented City (Blacksburg)
 – Crash simulation – Injury Biomechanics
 – National Tire Research Center – Virginia International Raceway
 – Truck simulator
 – Vehicle fleet including trucks, buses, vans, pickups, SUVs, cars, motorcycle(s)
Data collection system box
under passenger’s seat

Front VORAD

Rearward Camera

Face & Forward Cameras
Camera Vision Systems

- **Focus Areas**
 - Lane change behavior
 - Driver spatial awareness
 - Benefit of IVS technology

- **Methods**
 - 12 commercial drivers
 - 1 fleet - 1 terminal
 - 6 instrumented trucks
 - Forward- and side-mounted radar
 - 8 camera views
Drowsy Driver Warning System

Research Objective

Collect data that can be used to evaluate the effectiveness and operational capabilities, limitations, and characteristics of a drowsiness monitor.
AVLS Installation

• Component mounting
 – User interface
 – Main Unit
 – Ancillary
 • Antennas

• Connections - routing
 – Power
 – User interface / display
 – Antennas
 – Vehicle network
 – On-board systems
Equipment Installation Considerations

• Connections!, connections!, connections!
• Equipment sharing
 – Leave wiring, antennas, etc.
 – Share more expensive components
• Interference from other equipment
 – Radios
• Beware the parasitic loads
• Antenna placement
Communication Considerations - Data

• Type
 - GPRS
 - SMS
 - 4G LTE
 - Satellite
 - Bluetooth

• Adequate bandwidth

• Data transfer costs

• Automatic signal reacquisition
Communication Considerations - GPS

- Reliability
 - Blocking (trees, buildings, topography)
 - Last known good location
 - Interference (LightSquared)

- Augmentation
 - WAAS
 - DOT efforts
 - Obstacle warning?

- Accuracy notification
Integration with Other On-Board Systems

- Connections
- Signal
- Data format
- Speed
- Resolution
- Matching or adequate data resolution
- “Plug and Play” standards (Clear Roads, e.g.)
- Vehicle network (CAN bus, J1939)
AVLS/Human Interaction – The Good

• Improved safety
 – Location, movement
 – Fatigue prevention

• Record keeping
 – Less paperwork
 – Improved reporting accuracy

• Investment and involvement

• Less concern of damage claims
AVLS/Human Interaction – The Bad

• Distraction – Eyes-Off-Road
• Poor software interface issues
• Perception of “Big Brother”
• Poor training and frustration with system
• Dependability and operator’s reliance upon it
AVLS/Human Interaction – Recommendations

• Involve the operators up front
• Provide exceptional training
 – Operators
 – Supervisors
• Consider how and when the system will be used
• Good software interface
 – Touchscreen
 – Voice recognition
• Interface mounting and speed lockout
• Consider Eyes-Off-Road
Future Considerations - Connected Vehicle

“A multimodal initiative that aims to enable safe, interoperable networked wireless communications among vehicles, the infrastructure, and passengers’* personal communications devices.”

* And others

Reference: www.intellidriveusa.org
Connected Vehicle Applications

• Safety
 – Collision warning
 – Traffic signal violation warning
 – Emergency notification

• Mobility
 – Adaptive traffic signals
 – Intermodal transfers
 – Event and emergency planning/response
 – Parking location assistance

• Environmental
 – Eco-routing
 – Multi-modal routing
 – Adaptive roadway lighting
 – Smart intersections
• Data sources
 – Vehicles as mobile probes
 • 2012 stability control required on passenger vehicles
 • Maintenance vehicles (speed, air temp, fuel usage)
 – Roadside sources (weather, pavement, signals)
 • NCAR weather algorithms

• Integration with MDSS

• Improvement of vehicle location technology
Future - Optimized Winter Maintenance

• Use of Connected Vehicle network and data allows more effective and efficient deployment of pre-treatment, treatment, and plowing operations

• Local weather information from Connected Vehicle network
 – From vehicles:
 • Temperature, barometric pressure, precipitation sensors, head lights
 • Activation of ABS, Stability control, traction control
 – From roadside equipment:
 • Pavement temperatures, humidity, etc.

• From on-board equipment in maintenance vehicles
 – Application rates
 – GPS, Time