CLARUS Road-Weather Routing for Crash Risk Aversion

John D Hill, Dept of Mechanical Engineering
Michigan Technological University

K. Arthur Endsley,
Michigan Tech Research Institute

Road Weather Management Stakeholder Meeting, Albuquerque, NM
September 7, 2011
CLARUS Monitoring Stations

CLARUS stations in Michigan’s U.P. as of 2009
A regression model was created

- Dependent Variable – A crash occurring within 50 miles of a weather station during a particular hour.
- Independent Variables
 - Temperature (Air, Road and Dew Point)
 - Precipitation Types
 - Precipitation Intensities
 - Visibility
 - Wind Speed (Average and Gust)
 - Atmospheric Pressure
Linking Crashes and Weather

First cut: What variables are significant?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Directionality Tested</th>
<th>Odds of a Crash</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed</td>
<td>m/s</td>
<td>Higher Speed</td>
<td>1.023</td>
<td>0.0140</td>
</tr>
<tr>
<td>Ice Percent</td>
<td>%</td>
<td>Greater Percent</td>
<td>1.003</td>
<td>0.0288</td>
</tr>
<tr>
<td>Heavy Precipitation Intensity</td>
<td>present</td>
<td>1</td>
<td>1.753</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>No Precipitation Present</td>
<td>present</td>
<td>1</td>
<td>0.808</td>
<td>0.0052</td>
</tr>
<tr>
<td>Precipitation as Snow</td>
<td>present</td>
<td>1</td>
<td>2.174</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Atmospheric Pressure</td>
<td>mbar</td>
<td>Higher Pressure</td>
<td>0.993</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Dew Pt Temp</td>
<td>deg C</td>
<td>Higher Temperature</td>
<td>0.984</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>%</td>
<td>Greater Percent</td>
<td>0.996</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Precipitation Rate</td>
<td>cm/hr</td>
<td>Greater Rate</td>
<td>1.118</td>
<td>0.0478</td>
</tr>
<tr>
<td>Visibility</td>
<td>1000m</td>
<td>Greater Visibility</td>
<td>0.961</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Air Temperature</td>
<td>deg C</td>
<td>Higher Temperature</td>
<td>0.987</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Dry Road Surface</td>
<td>present</td>
<td>1</td>
<td>1.19</td>
<td>0.0004</td>
</tr>
<tr>
<td>Surface Ice Warning</td>
<td>present</td>
<td>1</td>
<td>1.747</td>
<td>0.0099</td>
</tr>
<tr>
<td>Surface Ice Watch</td>
<td>present</td>
<td>1</td>
<td>1.321</td>
<td>0.0010</td>
</tr>
<tr>
<td>Road Surface Temperature</td>
<td>deg C</td>
<td>Higher Temperature</td>
<td>0.995</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Wind Gust Speed</td>
<td>m/s</td>
<td>Higher Speed</td>
<td>1.042</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>
The regression model implies linear effects, but…
- Temperature changes may have greater effects around freezing
- What is the critical visibility level?
- Road temperatures are critical around freezing
- What about correlations between some of the variables?

Back to the raw data
- Where are the tipping points above or below which the regression modeling may be effective?
About 20% of the hours observed around the 4 stations had a crash.
Tipping Points

- Precipitation Rate and Visibility

6 cm/hr

16000 km

Average Crash Rate
Tipping Points

- Wind Speed (average and gust)

- Average Crash Rate

- Wind Gust Speed (m/s)

- Wind Avg Speed (m/s)

- 7 m/s

- 5 m/s
Decision Tree Construction

- A set of regression models applied under specific conditions.
 - Allows for evaluating continuous variables for regions of interest

- Evaluated subsets of data where crash risk was greater than 20% for all levels of other variables shown to be significant
 - i.e. the effect of dew pt, visibility, wind speed when air temperature is < 0 deg C.
Crash Risk Algorithm

1. Precipitation Rate > 0.6 cm/hr
 - Y: Average Wind Speed > 5 m/s
 - Y: Air and Dew Pt Temp < 0 deg C (Equation 1)
 - N: Air and Dew Pt Temp < 0 deg C (Equation 2)
 - N: Avg Wind Speed > 5 m/s
 - Y: Air and Dew Pt Temp < 0 deg C (Equation 3)
 - N: Air and Dew Pt Temp < 0 deg C (Equation 4)

2. Air and Dew Point Temperatures < 0 degrees C
 - Y: Crash Risk = 1
 - N: Crash Risk = 1
For each path on the tree, a regression model was created as done originally.

The exponential of the parameter estimate multiplied by the variable value yields the odds of a crash

\[
\text{CrashRisk}_{Eq1} = e^{(0.6025+0.1716+0.2189)}
\]

\[
\text{CrashRisk}_{Eq2} = e^{(0.6025+0.1716)}
\]

\[
\text{CrashRisk}_{Eq3} = e^{(0.6025+0.2189-1.6789(AirTemperature)+1.4417(DewPtTemperature))}
\]

\[
\text{CrashRisk}_{Eq4} = e^{(0.6025)}
\]

\[
\text{CrashRisk}_{Eq5} = e^{(0.1716+0.2189)}
\]

\[
\text{CrashRisk}_{Eq6} = e^{(0.1716-0.0245(DewPtTemperature))}
\]

\[
\text{CrashRisk}_{Eq7} = e^{(0.2189+0.0130(AirTemperature)+0.0438(AverageWindSpeed))}
\]
OpenStreetMap (OSM) data were loaded into a database to comprise the road network.

Length or travel time the typical cost of a road segment.

<table>
<thead>
<tr>
<th>road_sid</th>
<th>length</th>
<th>precip</th>
<th>adt</th>
<th>dewpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>53485902</td>
<td>0.1</td>
<td>2.1</td>
<td>375</td>
<td>15.2</td>
</tr>
</tbody>
</table>
Crash Risk Aversion Algorithm

- Origin & Destination
- Departure Date & Time
- Weather Observations
- Distance Weights
- Road Network Attributes
- Risk Modifier (α)
- Spatial Buffering & Filtering
- Road Segment Weather
- Road Segment Crash Risk
- Cost Calculation
- pgRouting
- Path of least cost
Interpolate weather data for the road network using inverse distance weighting (IDW)

$$z(r) = \sum_{i=1}^{N} \left(\frac{w_i(s)z_i}{\xi} \right)$$

$$\xi = \sum_{i=1}^{N} w_i$$

$$w_i(s) = \frac{1}{\text{distance}(r, s)^p}$$

- \(z_i\): Weather observation at a given CLARUS station
- \(w_i\): Weight applied to the weather observation
- \(r\): Road segment centroid
- \(s\): Location of CLARUS station
- \(\xi\): Normalization factor
- \(p\): Power parameter (fixed at 2 in this application)

IDW not the most rigorous spatial interpolation method, but best choice with only 4 CLARUS stations

Inverse distance weights, calculated from road segment centroid, stored in the database for each road segment
Crash Risk & Cost Calculation

- Classical **shortest time problem**, but with crash risk considered as part of the cost

\[f(p) = \text{cost}_{p,t} = \alpha \times \text{traveltime}_p + (1 - \alpha) \times \text{crashrisk}_{p,t} \]

- \(\text{cost}_{p,t} \): Cost of traversing edge \(p \) at time \(t \)
- \(\text{traveltime}_p \): Time required to traverse edge \(p \)
- \(\text{crashrisk}_{p,t} \): Crash risk associated with traversing edge \(p \) at time \(t \)
- \(\alpha \): Weighting factor between 0 and 1; shortest path and least crash risk

\[\text{crashrisk}_{p,t} = \frac{\sum_{s \in S} \lambda_s \text{crashrisk}_{s,t}}{\sum_{s \in S} \lambda_s} \]

Crash risk for each nearby station by inverse distance weighting; in our problem, all four stations considered
pgRouting

PostgreSQL

Adds types to typical data stored by Postgres

PostGIS

Operates on spatial representations enabled by PostGIS

Find the nearest edge in PostGIS

```sql
SELECT gid, source, target, the_geom,
       distance(the_geom, -83.69, 42.31, 4326) AS dist
FROM ways
WHERE the_geom && setsrid('BOX3D(-83.79, 42.21, -83.59, 42.41)::box3d, 4326)
ORDER BY dist LIMIT 1
```

Find the least-cost path between edges

```sql
SELECT rt.gid, rt.the_geom, length(rt.the_geom), ways.gid
FROM ways,
     (SELECT gid, the_geom FROM djikstra_sp_delta_crash_risk('ways', 650908, 643960, 0.1, '2009-01-01', 0.5)) AS rt
WHERE ways.gid=rt.gid
```
Routing Web Service

- Apache server programmed in **python** with the **django** framework (and RESTful and AJAX-compliant)
- Client application written in Javascript using GeoExt (ExtJS); web mapping powered by OpenLayers
- Routing data sent in Javascript Object Notation (JSON)
From State Highway 28, Covington, MI, USA:
1. Head **east** on M-28 E/US-41 S toward Old US Hwy 41 go 34.4 mi
2. Turn **right** onto Randall Dr go 302 ft
3. Take the 2nd right onto Co Rd 571/Co Rd Pl/Rd Pl/Stoneville Rd go 1.6 mi
4. Turn left onto Co Rd 581/Saginaw St go 36 ft
5. Turn **right** onto Co Rd Pl/Stoneville Rd go 1.4 mi
6. Turn left onto Co Rd Pq go 1.3 mi
7. Turn left onto Co Rd 476 go 0.8 mi
8. Turn **right** onto County Road Pn go 4.7 mi
9. Slight **right** onto Empire Mine Rd go 0.2 mi