Probe Technology Update – U.S.

Carl Andersen
Federal Highway Administration, USDOT

SIS35: Transformation of road transport through the use of probe data
1. Connected Data Systems
2. Research Data Exchange
3. Intelligent Network Flow Optimization
 ➢ Freeway-Based Dynamic Speed Harmonization
4. Road Weather Management
 ➢ Enhanced Maintenance Decision Support
5. Connected Vehicle Pilots
6. Trilateral Probe Data Research
Develop, test, and make available methods to capture, manage, and exploit multi-source data to enhance current operational practices and transform future surface transportation systems management.
Connected Data Systems - Program Goals

• Identify emerging data use cases to enhance surface transportation systems management
• Develop and test new capabilities to optimize data generation and transmission both from mobile data sources and roadside devices
• Identify opportunities to incorporate next-generation analytics and high-performance computing into transportation systems management
• Develop a prototype next-generation operational data environment
• Facilitate the transition from legacy systems to next generation transportation management systems that incorporate emerging data
• Share CDS products to encourage complementary research and facilitate deployment
Research Data Exchange (RDE)

- Web-based resource that collects, manages, and provides access to multi-source and multi-modal transportation data
- Quality-checked, well-documented, and freely available to the public
- Currently has ITS and connected vehicle data from 13 locations
- More data environments are constantly being added, including data from several Dynamic Mobility Application (DMA) prototypes.
- Will receive data from CV Pilots and Operational Data Environments

https://www.its-rde.net/
Example Probe Data-Enabled Applications

Intelligent Network Flow Optimization (INFLO):
• Freeway-Based Dynamic Speed Harmonization (SPD-HARM)
 o Harmonizes speeds within and across lanes to maximize roadway throughput, reduce crashes, and reduce fuel consumption

Road Weather Management Program (RWM):
• Enhanced Maintenance Decision Support System (EMDSS)
 o Generates and sends improved road-surface treatment plans to snow plow operators and drivers of maintenance vehicles by using road-weather data from maintenance and other probe vehicles

Road Agency Operations:
• Traffic Management Measures Estimation Applications
 o Estimates key traffic measures (such as travel times, speeds, flows, queues, etc.) to provide comprehensive, accurate, and precise information rapidly for improving decision-making
Intelligent Network Flow Optimization (INFLO)

- Dynamic Speed Harmonization (SPD-HARM)
- Queue Warning (Q-WARN)
- Cooperative Adaptive Cruise Control (CACC)
INFLO Prototype Small Scale Demo

Freeway-based Highway Speed Harmonization

• Scripted driving scenario: I-5, Seattle, WA
 o 20 vehicles with naïve drivers
 o Processed infrastructure & vehicle data in real time – delivered Q-WARN and SPD-HARM messages to drivers

• Successfully demonstrated:
 o Formulation of speed harmonization recommendations
 o Communication of queue location and speed harmonization recommendations to drivers
 o Vehicle data capture and dissemination using both cellular communications and DSRC
INFLO Impacts Assessment

Dynamic Speed Harmonization (SPD-HARM) & Queue Warning (Q-WARN) at various levels of potential future market acceptance

- Series of simulation experiments to estimate changes in Measures of Effectiveness (MOEs) under variety of operating conditions & response rates.
 - Reduced magnitudes of speed drops between vehicles (shockwaves), even at 10% market penetration level. Safety benefit considered through reduced probability of collisions where free-flowing traffic meets the back of a queue.
 - Trade-off was increased geographic impact of existing bottlenecks
 - Increased lane changing on the freeway
 - Rapidly increasing benefits in the first 20% of the fleet that is connected and complying
Road Weather Management (RWM) Program

Goals:

• Better understand impacts of weather on roadways and promote strategies and tools to mitigate those impacts

• Develop a system that provides "Anytime, Anywhere Road Weather Information" for road users and road operating agencies, as well as a robust, competitive market for road weather services
Enhanced Maintenance Decision Support System (EMDSS)

- Incorporates Connected Vehicle (CV) data, processes it through the VDT – outputs are used in road weather forecast and maintenance decision processes
- Vehicle data are from general public, commercial entities or specialty vehicles and public fleet vehicles
- Infrastructure data from fixed road side sensors – Environmental Sensor Station (ESS) sites and the National Weather Service
- Combined data sources insure information along entire corridor and not just at ESS sites
- Produces road weather forecasts and treatment recommendations to aid maintenance managers and other personnel in key decisions of treatment type, timing, rates, and locations
EMDSS Estimated Impacts

- With improved VDT algorithms the expected benefits of EMDSS are:
 - Improved accuracy of short (12hrs), and medium to long (24 hrs to 48 hrs) high resolution forecasts
 - High accuracy of forecasts will help maintenance personnel draft efficient strategies to optimize labor, equipment and chemicals thereby reducing costs
 - Timely treatment recommendations to potentially improve safety and roadway levels of service during adverse weather

Example of high resolution forecasts
Connected Vehicle Pilot Deployment Program

- Spur Early CV Tech Deployment
- Measure Deployment Benefits
- Resolve Deployment Issues

Wirelessly Connected Vehicles

Mobile Devices

Infrastructure

Safety

Mobility

Environment

Technical

Institutional

Financial

TOWARDS INTELLIGENT MOBILITY
Better use of space
Trilateral Probe Data Research Objectives

• JOINTLY DEVELOP high-level definition of probe data (from light, transit, and freight vehicles) for purposes of this collaboration and IDENTIFY technologies and systems that deliver these data

• **SHARE data** and research findings, experiences, and lessons learned from development and deployment of probe-data enabled applications and probe data systems

• JOINTLY IDENTIFY **applications** that may be developed using probe data as defined by the Trilateral EU-US-JPN Probe Data WG