Mobility Application Development & Testing – U.S. Update

Carl Andersen
Federal Highway Administration, USDOT

SIS22: International challenges to solutions for sustainable mobility
DYNAMIC MOBILITY APPLICATIONS PROGRAM

• Vision
 – Expedite development, testing, commercialization, and deployment of innovative mobility application
 • maximize system productivity
 • enhance mobility of individuals within the system

• Objectives
 – Create applications using frequently collected and rapidly disseminated multi-source data from connected travelers, vehicles and infrastructure
 – Develop and assess applications showing potential to improve nature, accuracy, precision and/or speed of dynamic decision
 – Demonstrate promising applications predicted to significantly improve capability of transportation system
 – Determine required infrastructure for transformative applications implementation, along with associated costs and benefits

• Project Partners
 – Strong internal and external participation
DMA Program Approach to Overcoming Two Key Challenges to Application Deployment

• Challenge 1 (Technical Soundness)
 Are the DMA bundles technically sound and deployment-ready?
 – Create a series of systems engineering documents (e.g., ConOps, SyRs)
 – Share code from open source bundle prototype development (OSADP website: http://www.itsforge.net/)
 – Demonstrate bundle prototypes (in isolation)
 – Field test integrated deployment concepts from across CV programs

• Challenge 2 (Transformative Impact)
 Are DMA bundle-related benefits big enough to warrant deployment?
 – Engage stakeholders to set transformative impact measures and goals
 – Assess whether prototypes show impact when demonstrated
 – Estimate benefits associated with broader deployment
 – Utilize analytic testbeds to identify synergistic bundle combinations
DMA Prototype Development Activity

EnableATIS: SmartTrAC
(University of Minnesota)

EnableATIS: CloudCar
(MIT)

R.E.S.C.U.M.E.
National Capital Region

INFLO S/Q
Seattle, WA

MMITSS
Anthem, AZ
Northern CA

FRATIS
Los Angeles, CA
South Florida
Dallas, TX

IDTO
Columbus, OH
Orlando, FL

R.E.S.C.U.M.E.
National Capital Region

Prototype Deployment Completed

Source: DMA Program

Towards Intelligent Mobility
Better use of space
EnableATIS Description

- **Objective** - To provide support to the marketplace for application development, i.e., enabling development of Advanced Traveler Information Systems. EnableATIS is not developing a specific application or system, but is rather seeking to formalize a framework whereby multiple activities are envisioned to interact to support a diverse traveler information environment.

- **Projects/Status**
 - SmarTrAC from UMN
 - Demonstrated in December 2014
 - Submitted final report in February 2015
 - CloudCar by MIT
 - Began testing in June 2014
 - Concluded in June 2015
 - ATIS 2.0 Precursor System
 - In preliminary stages

Source: EnableATIS Operational Concept
EnableATIS Key Findings

- **SmarTrAC**
 - Test data indicates acceptable performance of SmarTrAC, with the project team observing a reasonable battery consumption rate, a moderate data storage/transmission requirement, a high accuracy in identifying activity vs. trip episodes, etc.

- **CloudCar**
 - The report from CloudCar project indicated that for the current scope of the CloudThink and Mobility as a Service project, MySQL is sufficient. For larger scale deployment of CloudThink and MaaS, a framework better suited for large data should be used, such as Hadoop.

Source: DMA Program
INFLO DESCRIPTION

• **Objective** – To collect and disseminate multi-source data drawn from connected vehicles, infrastructure, and travelers to increase roadway throughput, reduce crashes, emissions and fuel consumption.

• **Prototype**
 – Site: Seattle, WS
 – Applications: SPD-HARM and Q-WARN

• **Status**
 – SPD-HARM and Q-WARN were demonstrated in January 2015.
 – All the final reports are available on the DMA website.
 – CAMP completed technical feasibility study of prototyping CACC in March 2015.

<table>
<thead>
<tr>
<th>ConOps</th>
<th>SyRs</th>
<th>Prototype</th>
<th>Field Test</th>
<th>IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Completed □ In progress □ Not started

Source: USDOT
INFLO Key Findings

- Results from the simulation analysis found that the prototype significantly reduced the magnitudes of the speed drops (shockwaves) between vehicles, even at the 10% market penetration level.
 - SPD-HARM resulted in reduction in speed variations between freeway segments by 18-58% and within freeway segments by 10-47%, resulting in fewer rear-end crashes
- The trade-off for the improved safety is that the prototype increases the geographic impact of existing bottlenecks on freeway speeds by expanding the upstream distance that is affected by congestion.

Source: Battelle

Source: WSDOT

Towards Intelligent Mobility
Better use of space
• **Objectives** - To develop multiple AMS Testbeds to evaluate the system wide impacts of individual and logical combinations of DMA bundles/ATDM strategies, and identify conflicts and synergies in order to maximize benefits.

• **AMS Testbeds**

 – San Mateo (CA) Tactical AMS Testbed
 – Pasadena (CA) Multi-Scale AMS Testbed
 – Phoenix (AZ) Strategic AMS Testbed
 – Dallas (TX) and San Diego (CA) Multi-Modal Corridor AMS Testbed
 – Chicago (IL) Road-Weather AMS Testbed

• **Status**

 □ Completed testbed specific data collection and isolation of confounding factors through cluster analysis
 □ Performing testbed specific calibration and developing evaluation plan
DMA-ATDM AMS PRELIMINARY FINDINGS

- **Applications Tested**
 - SPD-HARM, INC-ZONE, MMITSS, and SPD-HARM + INC-ZONE

- **Preliminary Findings**
 - Benefit of implementing applications in isolation or in combination differs from one operational condition to another:
 - On dry weather days, delay reduced by 4% with SPD-HARM+INC-ZONE, compared to 2.5% reduction with only SPD-HARM and 0.8% reduction with only INC-ZONE
 - On days with rain and low demand, SPD-HARM+INC-ZONE increased delay.
 - BSM frequency is not always critical for the effectiveness of DMA applications – difference in impacts of 1s and 3s frequencies is minimal (less than 0.5%).
 - Effectiveness of DMA applications reduces with increase in latency - most of the benefits of the system disappear beyond 1s-latency.
 - Level of penetration of technology is an essential factor in the DMA application effectiveness – MMITSS results in 13% reduction in vehicle delay at 100% market penetration compared to the base case vs. 6% reduction at 25% penetration.

Source: USDOT