DEDICATED SHORT-RANGE COMMUNICATIONS (DSRC) AND SPECTRUM POLICY

Ken Leonard
Director, ITS Joint Program Office

ITS Joint Program Office
Agenda

I. Dedication of the Spectrum
II. Basics of DSRC
III. DSRC Eco-System
IV. Objectives
V. Today’s Challenges for DSRC
VI. USDOT’s Spectrum Sharing Position
VII. DSRC Research Efforts
VIII. DSRC Research Reports
IX. FCC Refresh of Record
I. Dedication of 5.9GHz DSRC

- FCC Report and Order FCC 99-305 allocated 75 MHz of spectrum in the 5.9 GHz DSRC band
- The FCC noted the benefits of DSRC “…to improve traveler safety, decrease traffic congestion, facilitate the reduction of air pollution, and help to conserve vital fossil fuels.”

- Original FCC spectrum allocation in 1999; FCC amended allocation in 2004 and 2006
- FCC refreshing the record in 2016
 - Updates to sharing proposals
 - Solicits equipment for testing
II. Basics of DSRC

- **What it is**
 - Low latency medium adapted for a highly mobile vehicle environment

- **How the technology works**
 - Data can be distributed in a broadcast mode (300m range – line of sight)
 - Peer-to-peer data exchanges
 - Engineered to work well in a moving vehicle environment
II. Basics of DSRC

- **Packet-based** medium based on **IEEE 802.11** specifications for lower-layer definition
- Additional **network** layer definitions and a **cryptographic** process for establishing trust and protecting confidentiality given in **IEEE 1609 family**
- **Payload** definitions and performance requirements for common data units established in **SAE standards**
- General **IP transport** available with certain **priority** requirements and packet **size** limitations

Source: FCC Report and Order FCC 03-324
III. DSRC Eco-System

- **Technical Maturity**
 - Physical Medium (802.11p-wireless local wide area network (LAN) Standards
 - SAE Data Standards—Dictionary, Message Sets
 - SAE Performance Standards

- **Technical Efficiency**
 - Band Plan supports a highly mobile environment (low latency, multi-path resilience, no association times)
 - Appropriate research into noise/interference allow applications to account for noise above and below the band

- **Policy and Institutional**
 - Band Plan allows for:
 - High density per second per square kilometer
 - Innovative use of spectrum: broadcast + peer-to-peer modes
 - User requirements are met:
 - Trust and Authentication
 - No subscription fee
 - Privacy, Security
 - Institutional requirements are met:
 - Aligns with regulatory constraints
 - Achieves co-existence with other primary users
 - Achieves appropriate level of international harmonization
IV. Objectives

DSRC-ONLY Applications:
Applications that cannot be replicated by any current, known vehicle-resident sensor- or camera-based systems:

- **V2V:**
 - Intersection Movement Assist (IMA)
 - Left Turn Assist (LTA)
 - Emergency Electronic Brake Light

- **V2I:**
 - Red Light Violation Warning
 - Curve Speed Warning
 - Reduced Speed/Work Zone Warning

- **Automation**
 - High-speed Platooning
V. Today’s Challenges

- **Market Challenges:**
 - Growing consumer demand for mobile entertainment and personal applications

- **Sharing Challenges:**
 - Executive/legislative branch interest:
 - President/White House interested in freeing up spectrum and/or sharing
 - Congressional interest in spectrum usage and spectrum policy
 - Sharing concepts need to be tested
 - Chip manufacturers have not yet tested processes to implement sharing
 - Some industry organizations want to divide the spectrum, not share
VI. USDOT Spectrum Sharing Position

- USDOT and industry has made considerable investment in life-saving technologies—on the cusp of becoming an everyday use
- Spectrum sharing has introduced a new challenge
- USDOT is not opposed to spectrum sharing:
 - With the condition that unlicensed devices provide interference-free operations of crash-avoidance safety systems in real-world conditions
- FCC’s Rule (Part 15):
 - The Nation’s deployment preparations are dependent upon FCC and NTIA enforcing Part 15—unlicensed devices must not interfere with licensed services
- NHTSA has submitted an NPRM on V2V communications to OMB
VII. USDOT Research Efforts

<table>
<thead>
<tr>
<th>1. RESEARCH AND MEASUREMENTS</th>
<th>2. MODELING TO DEFINE SPECTRUM & CHANNEL USAGE</th>
<th>3. INTERNATIONAL COORDINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Noise and Interference</td>
<td>Models have to account for:</td>
<td>• Participating in the Agenda Item introduced by the Asian-Pacific Telecommunity (Working Party 5A, Item 1.12)</td>
</tr>
<tr>
<td>• Emission Limits</td>
<td>• Message Size & Frequency</td>
<td>• Also, ITU is recognizing DSRC (IEEE 802.11p) as a “radio access technology that plays an important role in the emerging 5G architecture--USDOT working to identify how DSRC standards become part of the architecture</td>
</tr>
<tr>
<td>• Multi-Path</td>
<td>• Geographic layout and coverage that supports both broadcast and peer-to-peer exchanges without interference</td>
<td></td>
</tr>
<tr>
<td>• Indoor/Outdoor</td>
<td>• Noise + interference + multi-path</td>
<td></td>
</tr>
</tbody>
</table>

Outcomes:
- Provides data-based conclusions on sharing feasibility
- Provides conclusions about:
 - How much of the spectrum will be used and when
- Allows ITS community to ensure a future path without disruptions

4. COMMUNICATIONS & PUBLIC OUTREACH

- **Meetings and workshops**
- **Public Presentations:** ITS World Congress
- **Reports:** Analysis of test results
VIII. DSRC Related Research Reports

- Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application

- DSRC Technology and Application – Report to Congress

- DSRC Test Plan

- DSRC Licensing and Spectrum Management Guide
IX. FCC Record Refresh for 5.9 GHz

- Federal Register Notice
 - https://federalregister.gov/a/2016-13510
 - Published on June 7, 2016
 - Comments provided by July 7, 2016
 - Reply comments provided by July 22, 2016

- Testing Approach Outlined
 - Devices submitted to FCC in August/September 2016
 - Three phases of testing:
 - Phase I: Laboratory testing—FCC has devices now
 - Phase II: Basic field research with devices—USDOT is working with partners to establish the research sites
 - Phase III: “Real-world” scenario testing
Stay Connected

Visit our website for information on:
• Webinars
• Events
• Publications
• News

Twitter: @ITSJPODirector
Facebook: https://www.facebook.com/DOTRITA
Website: http://www.its.dot.gov

Ken Leonard
Director, ITS Program
Ken.Leonard@dot.gov