Connected Vehicle Pilots Program
Carl Andersen, FHWA
CONNECTED VEHICLE PILOT
Deployment Program
Program Goals

Spur Early CV Tech Deployment
Wirelessly Connected Vehicles
Mobile Devices
Infrastructure

Measure Deployment Benefits
Safety
Mobility
Environment

Resolve Deployment Issues
Technical
Institutional
Financial
Organizing Principles

- Pilots will be *pilot deployments*, that is, real-world environment deployments
 - If successful, deployed technologies are expected to remain as permanent operational elements

- There will be *multiple* pilot sites over time
 - Each site will have different needs, focus and applications
 - That is, pilot deployments must address a critical problem
 - The needs of each site must drive the application selection process

- Pilot deployments are expected to be both *large-scale and multimodal*
 - *Large-scale* implies pilot deployments will have measurable impact, not a specific minimum geographic or vehicle fleet size
 - Sites will deploy *multiple applications* drawing on the products of USDOT and other connected vehicle research
Proposed Pilot Deployment Requirements

- Multiple connected vehicle applications must be deployed together
 - Cost-effectively leveraging captured CV and mobile device data
 - Address multimodal problems

- Pilot deployments should leverage USDOT-sponsored research
 - Need not include all applications (in fact, this is unlikely to be practical)
 - May include new connected vehicle applications not considered by USDOT
 - All applications selected must work and have an impact

- Pilot deployments should include the capture of data from multiple sources
 - At a minimum, vehicles must represent one source of data used in the pilot deployment
Proposed Pilot Deployment Requirements

- Multiple forms of communications technologies are desired
 - DSRC desired as one communication technology
 - Integrated or carry-in devices for connected vehicles capable of generating an SAE J2735 Basic Safety Message (BSM)

- Well-defined, focused, quantitative performance measures
 - Support an independent evaluation effort

- Share pilot deployment data and lessons learned
 - While protecting privacy and intellectual property

- Security and credentialing management system
Partnership and Deployment Phases

- **Partnership Expectation**
 - Encourage partnerships of multiple stakeholders
 - Public Sectors
 - Private Sectors
 - Academic/Research Institutions
 - Partnership Expectations
 - A clear leader or a collaboration of organizations

- **Proposed Deployment Phases**
 - Pre-Pilot Deployment Concept Development Stage: 6 – 9 months
 - Pre-Pilot Site Development Stage: 10 – 14 months
 - Pilot Deployment Stage: 18 months
Connected Vehicle Applications

- The USDOT has made a significant investment in foundational research and initial development of connected vehicle applications
 - Concepts of Operations
 - System Requirements
 - Prototype Design and Testing
 - Prototype Impacts Assessment
 - Analytics, Modeling and Simulation to Assess Potential Long-Term Impacts

- Not all CV Application efforts are in the same state of maturity, few are complete
 - But a large number of application development efforts across multiple programs will be substantively complete in late 2014
Connected Vehicle Applications

<table>
<thead>
<tr>
<th>V2I Safety</th>
<th>Environment</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Light Violation Warning</td>
<td>Eco-Approach and Departure at Signalized Intersections</td>
<td>Advanced Traveler Information System</td>
</tr>
<tr>
<td>Curve Speed Warning</td>
<td>Eco-Traffic Signal Timing</td>
<td>Intelligent Traffic Signal System</td>
</tr>
<tr>
<td>Stop Sign Gap Assist</td>
<td>Eco-Traffic Signal Priority</td>
<td>(I-SIG)</td>
</tr>
<tr>
<td>Spot Weather Impact Warning</td>
<td>Connected Eco-Driving</td>
<td>Signal Priority (transit, freight)</td>
</tr>
<tr>
<td>Reduced Speed/Work Zone Warning</td>
<td>Wireless Inductive/Resonance Charging</td>
<td>Mobile Accessible Pedestrian Signal</td>
</tr>
<tr>
<td>Pedestrian in Signalized Crosswalk Warning (Transit)</td>
<td>Eco-Lanes Management</td>
<td>System (PED-SIG)</td>
</tr>
<tr>
<td></td>
<td>Eco-Speed Harmonization</td>
<td>Emergency Vehicle Preemption (PREEMPT)</td>
</tr>
<tr>
<td></td>
<td>Eco-Cooperative Adaptive Cruise Control</td>
<td>Dynamic Speed Harmonization (SPD-HARM)</td>
</tr>
<tr>
<td>V2V Safety</td>
<td>Eco-Traveler Information</td>
<td>Queue Warning (Q-WARN)</td>
</tr>
<tr>
<td>Emergency Electronic Brake Lights (EEBL)</td>
<td>Eco-Ramp Metering</td>
<td>Cooperative Adaptive Cruise Control</td>
</tr>
<tr>
<td>Forward Collision Warning (FCW)</td>
<td>Low Emissions Zone Management</td>
<td>Incident Scene Pre-Arrival Staging</td>
</tr>
<tr>
<td>Intersection Movement Assist (IMA)</td>
<td>AFV Charging / Fueling Information</td>
<td>Guidance for Emergency Responders</td>
</tr>
<tr>
<td>Left Turn Assist (LTA)</td>
<td></td>
<td>(RESP-STG)</td>
</tr>
<tr>
<td>Blind Spot/Lane Change Warning (BSW/LCW)</td>
<td>Dynamic Eco-Routing (light vehicle, transit, freight)</td>
<td>Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE)</td>
</tr>
<tr>
<td>Do Not Pass Warning (DNPW)</td>
<td>Eco-Smart Parking</td>
<td>Emergency Communications and Evacuation (EVAC)</td>
</tr>
<tr>
<td>Vehicle Turning Right in Front of Bus Warning (Transit)</td>
<td>Dynamic Eco-Routing (light vehicle, transit, freight)</td>
<td>Connection Protection (T-CONNECT)</td>
</tr>
<tr>
<td>Agency Data</td>
<td>Road Weather</td>
<td>Dynamic Transit Operations (T-DISP)</td>
</tr>
<tr>
<td>Probe-based Pavement Maintenance</td>
<td>Motorist Advisories and Warnings (MAW)</td>
<td>Dynamic Ridesharing (D-RIDE)</td>
</tr>
<tr>
<td>Probe-enabled Traffic Monitoring</td>
<td>Enhanced MDSS</td>
<td>Freight-Specific Dynamic Travel Planning and Performance</td>
</tr>
<tr>
<td>Vehicle Classification-based Traffic Studies</td>
<td>Vehicle Data Translator (VDT)</td>
<td></td>
</tr>
<tr>
<td>CV-enabled Turning Movement & Intersection Analysis</td>
<td>Weather Response Traffic Information (WxTINFO)</td>
<td></td>
</tr>
<tr>
<td>CV-enabled Origin-Destination Studies</td>
<td></td>
<td>Intelligent Eco-ICM Decision Support System</td>
</tr>
<tr>
<td>Work Zone Traveler Information</td>
<td>Road Weather</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motorist Advisories and Warnings (MAW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhanced MDSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vehicle Data Translator (VDT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weather Response Traffic Information (WxTINFO)</td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td>Mobility</td>
<td></td>
</tr>
<tr>
<td>Advanced Traveler Information System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent Traffic Signal System (I-SIG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Priority (transit, freight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Accessible Pedestrian Signal System (PED-SIG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Vehicle Preemption (PREEMPT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Speed Harmonization (SPD-HARM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue Warning (Q-WARN)</td>
<td>Cooperative Adaptive Cruise Control (CACC)</td>
<td></td>
</tr>
<tr>
<td>Vehicle Turning Right in Front of Bus Warning (Transit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident Scene Pre-Arrival Staging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance for Emergency Responders (RESP-STG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Communications and Evacuation (EVAC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection Protection (T-CONNECT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Transit Operations (T-DISP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Ridesharing (D-RIDE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight-Specific Dynamic Travel Planning and Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drayage Optimization</td>
<td>Smart Roadside</td>
<td></td>
</tr>
<tr>
<td>Wireless Inspection</td>
<td>Smart Roadside</td>
<td></td>
</tr>
<tr>
<td>Smart Truck Parking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pilot Deployment Process

- Pilot Deployment Concept Development Process
 - Identify Local Needs
 - Set Performance Goals
 - Select CV Applications That Work Together To Meet Those Goals

- USDOT Sample Pilot Concepts from Hypothetical Locations
 - Hypothetical, but realistic examples of localities applying the pilot deployment concept development process
Sample Deployment Concept – Downtown SunnysIDE
~ Improving Congestion in an Urban Arterial Network ~

Improve Transit Reliability
- Connection Protection
- Transit Signal Priority

Improve Pedestrian Safety
- Mobile Accessible Pedestrian Signal System
- Pedestrian in Signalized Crosswalk Warning
- Intersection Movement Assist

Improve Air Quality
- Eco-Approach and Departure at Signalized Intersections
- Eco-Traffic Signal Timing

Synergies among applications increase benefits and reduce costs
Sample Deployment Concept – Halleck Expressway
~ Improving Travel Time Reliability on an Urban Expressway~

Reduce Incident Delay
- Incident Scene Pre-Arrival Staging Guidance for Emergency Responders
- Incident Scene Work Zone Alerts for Drivers and Workers

Improve Bottleneck Throughput
- Speed Harmonization and Queue Warning
- Emergency Electronic Brake Lights and Forward Collision Warning

Manage Diversions Better
- EnableATIS
- Intelligent Signal Control

Synergies among applications increase benefits and reduce costs
Sample Deployment Concepts – Greypool County
~ Improving Safety and Mobility in a Rural Area ~

- Improve Safety
 - Red Light Violation Warning
 - Stop Sign Gap Assist
 - Left Turn Assist

- Informing Drivers During Bad Weather
 - Weather Response Traffic Information

- Increase Accessibility
 - Dynamic Transit Operations

Synergies among applications increase benefits and reduce costs
Sample Deployment Concept – District 13 Operations
~ Improving the Efficiency of Road Maintenance ~

Improve Snow Removal
- Enhanced Maintenance Decision Support System

Improve Management of Work Zones
- Work Zone Traveler Information

Improve Situational Awareness
- Probe-based Pavement Maintenance

Synergies among applications increase benefits and reduce costs
Sample Deployment Concept – I-876 Corridor
~ Improving Freight Movement in an Inter-State Corridor ~

Improve Freight Productivity
- Freight Advanced Traveler Information System
- Drayage Optimization
- Freight Signal Priority

Improve Truck Safety
- Smart Truck Parking
- Curve Speed Warning
- Do Not Pass Warning/Lane Change Warning

Synergies among applications increase benefits and reduce costs
CV Pilots Deployment Schedule and Resources

Proposed CV Pilots Deployment Schedule

<table>
<thead>
<tr>
<th>Schedule Item</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Pre-Deployment Workshop/Webinar Series</td>
<td>Summer-Fall 2014</td>
</tr>
<tr>
<td>Solicitation for Wave 1 Pilot Deployment Concepts</td>
<td>Early 2015</td>
</tr>
<tr>
<td>Wave 1 Pilot Deployments Award(s)</td>
<td>September 2015</td>
</tr>
<tr>
<td>- Concept Development Phase (6-9 months)</td>
<td></td>
</tr>
<tr>
<td>- Design/Build/Test Phase (10-14 months)</td>
<td></td>
</tr>
<tr>
<td>- Operate and Maintain Phase (18 months)</td>
<td></td>
</tr>
<tr>
<td>Solicitation for Wave 2 Pilot Deployment Concepts</td>
<td>Early 2017</td>
</tr>
<tr>
<td>Wave 2 Pilot Deployments Award(s)</td>
<td>September 2017</td>
</tr>
<tr>
<td>- Concept Development Phase (6-9 months)</td>
<td></td>
</tr>
<tr>
<td>- Design/Build/Test Phase (10-14 months)</td>
<td></td>
</tr>
<tr>
<td>- Operate and Maintain Phase (18 months)</td>
<td></td>
</tr>
<tr>
<td>Pilot Deployments Complete</td>
<td>September 2020</td>
</tr>
</tbody>
</table>

Resources
- ITS JPO Website: http://www.its.dot.gov/
- CV Pilots Program Website: http://www.its.dot.gov/pilots
CV Pilots Website

http://www.its.dot.gov/pilots

Latest News & Updates

- Sample Deployment concept audio recordings for District 13 Operations is now available (9/23/14)
- Sample Deployment concept audio recordings for Greypool County is now available (9/22/14)
- Deployment concept audio recordings for Downtown Sunnyside and H.W. Hallack Expressway are now available (9/18/14)
- CV Pilots FAQs (Updated September 16, 2014)
- The USDOT Connected Vehicles Pilot Deployment Program Webinar Series Part 2: Communications and Role of DSRC is open for registration
- The presentation material of the USDOT Connected Vehicles Pilot Deployment Program Webinar Series Part 1 is available now
- The Descriptions of the Connected Vehicle Applications are available now
- Summary of Responses to the Connected Vehicle Pilot Deployment Program's Request for Information (RFI)

About the CV Pilots Deployment Project

The U.S. DOT (DOT) connected vehicle research program is a multimodal initiative that aims to enable safe, interoperable, networked wireless communications among vehicles, infrastructure, and personal communication devices. Connected vehicle research is sponsored by the DOT and others to leverage the potentially transformative capabilities of wireless technology to make surface transportation safer, smarter, and greener. Research has resulted in a considerable body of work supporting pilot deployments, including concepts of operations and prototyping for more than two dozen applications. Concurrent Federal research efforts developed critical, cross-cutting technologies and other enabling capabilities required to integrate and deploy applications.

Based on the successful results of the connected vehicle research program, and the recent decision by NHTSA to pursue vehicle-to-vehicle communications safety technology for light vehicles, a robust connected vehicle pilots program is envisioned as a mechanism to spur the implementation of connected vehicle technology. These pilots will serve as initial implementations of connected vehicle...