Overview of VTTI’s Environmental Connected Vehicle Research Activities

By
Hesham Rakha, Ph.D., P.Eng.

Samuel Reynolds Pritchard Professor of Engineering, Charles E. Via, Jr. Dept. of Civil and Environmental Engineering at Virginia Tech

Courtesy Professor, Bradley Department of Electrical and Computer Engineering

Director, Center for Sustainable Mobility at the Virginia Tech Transportation Institute
Presentation Outline

- Eco-routing
 - Field and modeling results
- Eco-drive systems
- Eco-cooperative adaptive cruise control systems in the vicinity of signalized intersections
- Autonomous vehicle control
- On-going and future research initiatives
Connected Vehicle Eco-Routing Research
Trip Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Highway</th>
<th>Arterial</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Travel Time (min)</td>
<td>25.63</td>
<td>29.9</td>
<td>4.27 (14%)</td>
</tr>
<tr>
<td>95 percentile of Travel time</td>
<td>36.25</td>
<td>37.86</td>
<td></td>
</tr>
<tr>
<td>5 percentile of Travel time</td>
<td>23.32</td>
<td>26.23</td>
<td></td>
</tr>
<tr>
<td>Std.Dev. of Travel Time (min)</td>
<td>4.17</td>
<td>5.08</td>
<td>0.91</td>
</tr>
<tr>
<td>Average Speed (mi/h)</td>
<td>53.39</td>
<td>35.39</td>
<td>18</td>
</tr>
<tr>
<td>Std. Deviation of Speed</td>
<td>6.39</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>95 percentile of Speed</td>
<td>58.85</td>
<td>39.44</td>
<td></td>
</tr>
<tr>
<td>5 percentile of Speed</td>
<td>37.04</td>
<td>27.46</td>
<td></td>
</tr>
<tr>
<td>Distance (mi)</td>
<td>22.44</td>
<td>17.25</td>
<td>5.19</td>
</tr>
</tbody>
</table>

HC Emissions

<table>
<thead>
<tr>
<th>Highway</th>
<th>Arterial</th>
<th>Highway</th>
<th>Arterial</th>
<th>Highway</th>
<th>Arterial</th>
<th>Highway</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT-Micro</td>
<td>MOBILE6</td>
<td>MOVES2010</td>
<td>CMEM24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HC (g)
Contribution of High Engine Loads

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>CO</th>
<th>NOx</th>
<th>CO2</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT–Micro Hwy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1 %</td>
<td>16 %</td>
<td>19 %</td>
<td>4 %</td>
<td>3 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Top 2 %</td>
<td>24 %</td>
<td>30 %</td>
<td>7 %</td>
<td>6 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Top 5 %</td>
<td>39 %</td>
<td>47 %</td>
<td>17 %</td>
<td>13 %</td>
<td>14 %</td>
</tr>
<tr>
<td>Top 10 %</td>
<td>54 %</td>
<td>64 %</td>
<td>32 %</td>
<td>23 %</td>
<td>25 %</td>
</tr>
<tr>
<td>CMEM24 Hwy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1 %</td>
<td>20 %</td>
<td>38 %</td>
<td>30 %</td>
<td>3 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Top 2 %</td>
<td>32 %</td>
<td>63 %</td>
<td>50 %</td>
<td>6 %</td>
<td>9 %</td>
</tr>
<tr>
<td>Top 5 %</td>
<td>52 %</td>
<td>80 %</td>
<td>73 %</td>
<td>14 %</td>
<td>17 %</td>
</tr>
<tr>
<td>Top 10 %</td>
<td>81 %</td>
<td>84 %</td>
<td>90 %</td>
<td>25 %</td>
<td>28 %</td>
</tr>
</tbody>
</table>
System-wide Eco-Routing Impacts: The INTEGRATION Connected Vehicle Framework

Connected Vehicle Eco-routing Logic

- **Model initialization:**
 - Routes selected based on fuel consumption levels for travel at the facility’s free-flow speed

- **Feedback system:**
 - Vehicles report their fuel consumption experiences prior to exiting a link
 - Moving average fuel consumption estimate is recorded for each link for each of the five vehicle classes
 - Re-routing frequency defined by user
 - Independent white noise errors can also be introduced
 - Vehicle class dependent
Network-wide Testing

Columbus Network
Network Characteristics

- Cleveland network
 - Four interstate highways (I-90, I-71, I-77, and I-490)
 - 65,000 vehicles in the morning peak hour.
 - 1,397 nodes, 2,985 links, 209 traffic signals, and 8,269 origin-destination (O-D) demand pairs using 2010 demand data.

- The Columbus network
 - Three interstate highways (I-70, I-71, and I-670)
 - Grid configuration.
 - Downtown area is a bottleneck during peak hours.
 - Network provides more opportunities for re-routing compared to the Cleveland network.
 - 2,056 nodes, 4,202 links, 254 traffic signals, and 21,435 O-D demand pairs.
Network-wide Impacts

- Eco-routing consistently reduces network-wide fuel consumption levels
 - Reductions of 3.3 and 9.3 percent, respectively
 - 4.8 and 3.2 percent increase in the average travel time
Network-wide Impacts

Impact of Traffic Demand

<table>
<thead>
<tr>
<th>MOEs</th>
<th>Routing Method</th>
<th>Cleveland</th>
<th>Columbus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>Distance (Km)</td>
<td>ECO</td>
<td>4.57</td>
<td>4.57</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>4.81</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>5.0%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Time (s)</td>
<td>ECO</td>
<td>312</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>299</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>-4.3%</td>
<td>-4.5%</td>
</tr>
<tr>
<td>Fuel (l)</td>
<td>ECO</td>
<td>0.537</td>
<td>0.540</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>0.556</td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>3.37%</td>
<td>3.59%</td>
</tr>
<tr>
<td>HC (g)</td>
<td>ECO</td>
<td>1.77</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>1.99</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>11.1%</td>
<td>11.9%</td>
</tr>
<tr>
<td>CO (g)</td>
<td>ECO</td>
<td>44.59</td>
<td>45.80</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>50.52</td>
<td>52.34</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>11.7%</td>
<td>12.5%</td>
</tr>
<tr>
<td>NOx (g)</td>
<td>ECO</td>
<td>1.54</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>1.66</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>7.2%</td>
<td>7.6%</td>
</tr>
<tr>
<td>CO₂ (g)</td>
<td>ECO</td>
<td>1184</td>
<td>1188</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>1220</td>
<td>1226</td>
</tr>
<tr>
<td></td>
<td>Rel. Diff</td>
<td>2.9%</td>
<td>3.1%</td>
</tr>
</tbody>
</table>
Eco-Drive Systems
Eco-Cruise Control
Overview

- **Objective:**
 - Develop a predictive fuel-optimum control system

- **Input:**
 - Desired speed and speed bounds (min/max speed)

- **Building blocks:**
 - Powertrain and fuel consumption model

Eco-Cruise Control
Powertrain Model

- 2007 Chevy Malibu: I-81 southbound
 - 65 mph cruise control operation
 - Measured: 13,297 kW vs. Estimated: 13,871 kW (4.3% Error)
Eco-Cruise Control
VT-CPFM Model

- Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM)

\[
FC(t) = \frac{a_0 + a_1 P(t) + a_2 P(t)^2}{a_0} \\
\tag{1}
\]

- Has the ability to produce a control system that does not result in bang-bang control and

- Is easily calibrated using publicly available data without the need to gather detailed engine and fuel consumption data.

- Estimates CO₂ emissions \((R^2=95\%)\)

Where:
- \(a_0, a_1, a_2\) are model constants that require calibration,
- \(P(t)\) is the instantaneous total power in kilowatts (kW) at instant \(t\), and
- \(w(t)\) is the engine speed at instant \(t\).
Eco-Cruise Control

Publications

Eco-Cruise Control
Model Logic

- Upper Boundary
- Target Speed
- Lower Boundary

Stage Length (d_s)

Optimization Distance (d_o)

Optimization Frequency (d_f)
Eco-Cruise Control
Model Logic

- Three step optimization:
 - Prune search space using powertrain model
 - Speed and gear space that the vehicle is physically able to achieve for the given topography and vehicle characteristics
 - Discretize continuous search space
 - Use speed and gear levels to construct a graph
 - Compute optimum control (minimum path)
 - The vehicle speed and gear changes over each stage considering a cost function at stage transitions

\[
Cost = w_1 \times FC(v_0, v_1) + w_2 \times \left| \frac{v_1}{v_{ref}} - 1 \right| \times FC(v_{ref}) + w_3 \times \left| g_1 - g_0 \right| \times FC(v_{ref})
\]
Eco-Cruise Control
Model Testing (NYC to LA)

- 2790 miles with mostly highway sections
 - Use I-80, I-76, I-70, I-15, and I-10 route
- Assumed no interaction with other vehicles
Eco-Cruise Control Model Testing (NYC to LA)

<table>
<thead>
<tr>
<th>Toyota Camry</th>
<th>Fuel (L)</th>
<th>MPG</th>
<th>Fuel Saving</th>
<th>TT (hr)</th>
<th>Avg. Spd (mph)</th>
<th>σ_s (mph)</th>
<th>ΔTT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>252.8</td>
<td>41.9</td>
<td></td>
<td>43.0</td>
<td>64.9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Predictive (+5 & -1 mph)</td>
<td>239.6</td>
<td>44.3</td>
<td>5.2%</td>
<td>43.3</td>
<td>64.4</td>
<td>1.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Conventional (Spd : 60.7 mph)</td>
<td>239.2</td>
<td>44.3</td>
<td>5.4%</td>
<td>45.1</td>
<td>60.6</td>
<td>0.6</td>
<td>4.8%</td>
</tr>
<tr>
<td>Predictive (± 5 mph)</td>
<td>227.2</td>
<td>46.7</td>
<td>10.1%</td>
<td>46.0</td>
<td>60.7</td>
<td>2.0</td>
<td>7.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chevy Tahoe</th>
<th>Fuel (L)</th>
<th>MPG</th>
<th>Fuel Saving</th>
<th>TT (hr)</th>
<th>Avg. Spd (mph)</th>
<th>σ_s (mph)</th>
<th>ΔTT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>469.3</td>
<td>22.6</td>
<td></td>
<td>42.9</td>
<td>65.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Predictive (+5 & -1 mph)</td>
<td>423.7</td>
<td>25.0</td>
<td>9.7%</td>
<td>43.5</td>
<td>64.1</td>
<td>0.7</td>
<td>1.4%</td>
</tr>
<tr>
<td>Conventional (Spd: 60.3 mph)</td>
<td>431.4</td>
<td>24.6</td>
<td>8.1%</td>
<td>45.9</td>
<td>60.8</td>
<td>1.0</td>
<td>6.9%</td>
</tr>
<tr>
<td>Predictive (± 5 mph)</td>
<td>387.1</td>
<td>27.4</td>
<td>17.5%</td>
<td>46.3</td>
<td>60.3</td>
<td>1.2</td>
<td>7.9%</td>
</tr>
</tbody>
</table>
Eco-Drive System
Model Overview

- Predictive Eco-Cruise Control (ECC) and car-following

Eco-Cooperative Adaptive Cruise Control in the Vicinity of Signalized Intersections

ECACC
Formulation

- Problem solved using DP
 - Initial state: When SPaT information is received.
 - Intermediate state: When vehicle should reach stop line.
 - Final state: Location when vehicle reaches its desired speed for lowest acceleration level.

- Use A* algorithm to speed computation of minimum path

\[
\min J_u + J_d
\]

Where:
\[
J_u = \int_{t_0}^{t_s} FC(t) dt \quad J_a = \int_{t_s}^{t_f} FC(t) dt
\]
ECACC Results

![Bar chart showing fuel consumption for ECACC Profile and Uninformed Driver.](image)
Intersection Cooperative Adaptive Cruise Control System

iCACC Formulation

Objective:
\[
\text{Min} \sum_{i=1}^{\Omega^1} \text{Delay}_{D_i}
\]

Subject to:

1. Ensure that the FIFO rule is applied to all vehicles in the same lane;

2. The arrival of two intersecting vehicles at the same conflict point is separated by a minimum safe time gap;

3. The arrival time of each vehicle at the conflict point is greater than any arrival time computed in the previous simulation step;

\[
\text{min} (\alpha_{ij} + \beta_{ij} + \gamma_{ij} - \delta_{ij})
\]

\[
\text{max} (\alpha_{jk} + \beta_{jk} + \gamma_{jk} - \delta_{jk})
\]

\[
\text{max} (\alpha_{mp} + \beta_{mp} + \gamma_{mp} - \delta_{mp})
\]
iCACC
Example Demonstration

Sample Control Output
iCACC
System Evaluation

Average Fuel Consumption (mL)

Case Number

iCACC
Signal
Roundabout
AWSC
iCACC
Roundabout System Enhancement

- Average Delay per Vehicle (sec)
- Level of Penetration (%)

- v/c=0.2
- v/c=0.4
- v/c=0.6
- v/c=0.8
- v/c=1.0

Graph showing the relationship between average delay per vehicle and level of penetration at different values of v/c.
iCACC
Bi-level Optimization

- Upper level
 - Delay optimization to schedule arrivals of vehicles
- Lower level
 - Fuel consumption optimization s.t. upper level constraints
On-going and Future Work

- Eco-traffic signal control:
 - Designing of traffic signal timings to reduce vehicle fuel consumption levels
 - Field testing a prototype system
- Real-time eco-scheduling and routing of buses
- Developing a prototype in-vehicle eco-routing system
- Integrating speed harmonization algorithms with eco-drive systems