Eco-Lanes: Preliminary Modeling Results

Applications for the Environment: Real-Time Information Synthesis (AERIS) Program

Summer Webinar Series
July 23rd, 2014
Presentation Overview

Overview of the Eco-Lanes Operational Scenario

Eco-Lanes Applications

Simulation Modeling Set-up and Initial Modeling Results

Conclusions and Lessons Learned
Eco-Lanes Operational Scenario

- Dedicated freeway lanes – similar to HOV lanes – optimized for the environment that encourage use from vehicles operating in eco-friendly ways.

- The lanes should:
 - Reduce energy consumption & emissions, improve mobility
 - Reduce unnecessary accelerations/decelerations
 - Encourage greener driving behavior
Eco-Lanes Operational Scenario

Eco-Lanes
Dedicated freeway lanes – similar to HOV lanes – optimized for the environment that encourage use from vehicles operating in eco-friendly ways. The lanes may support eco-speed limits, eco-cooperative adaptive cruise control (ECACC), and wireless inductive/resonance charging infrastructure embedded in the roadway. The lanes seek to:

- Reduce energy consumption & emissions, improve mobility
- Reduce unnecessary accelerations/decelerations
- Encourage greener driving behavior
Eco-Lanes Applications

ECO-LANES

- Eco-Lanes Management
- Eco-Speed Harmonization
- Eco-Cooperative Adaptive Cruise Control (ECACC)
- Eco-Ramp Metering *(not modeled)*
- Connected Eco-Driving *(not modeled)*
- Wireless Inductive/Resonance Charging *(not modeled)*
- Eco-Traveler Information Applications *(not modeled)*
Simulation Tools

Microscopic Traffic Simulation: Paramics
(*applied to generic freeway segment and real-world freeway*)

- Eco-Speed Harmonization
 - Eco-Speed Limits
 - Second-by-Second Vehicle Speeds

- Eco-Cooperative Adaptive Cruise Control
 - Vehicle Type
 - Second-by-Second Vehicle Trajectories
 - ECACC Strategies

- Emissions Model (MOVES)
 - Vehicle Type
 - Vehicle Locations
 - Second-by-Second Vehicle Trajectories
 - Real-Time Emissions Data

- Aggregated Emissions from Simulation
Generic Freeway Segment

Zone 1 upstream bottleneck downstream Zone 2

Traffic Direction
California SR-91 E

- Busy freeway corridor in Southern California
 - 3 or 4 general purpose lanes each in direction
 - 1 high occupancy vehicle (HOV) lane each in each direction
 - 60 mph speed limit
 - Often suffers from level-of-service (LOS) C - F conditions
Eco-Lanes Modeling Matrix

<table>
<thead>
<tr>
<th>Eco Lanes Modeling</th>
<th>Generic Freeway</th>
<th>Real-world (California SR-91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Speed Harmonization</td>
<td>• Algorithm complete*</td>
<td>• Network coded/calibrated</td>
</tr>
<tr>
<td></td>
<td>• Sensitivity analysis on V/C and penetration rate</td>
<td>• Algorithm specifically tuned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Final simulation tests underway</td>
</tr>
<tr>
<td>Eco-Cooperative Adaptive Cruise Control (ECACC)</td>
<td>• Algorithm complete**</td>
<td>• Network coded/calibrated</td>
</tr>
<tr>
<td></td>
<td>• Volume analysis, triggering distance sensitivity analysis</td>
<td>• Algorithm specifically tuned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Final simulation tests underway</td>
</tr>
<tr>
<td>Eco-Speed Harmonization + ECACC</td>
<td>• Combined algorithm complete</td>
<td>• Network coded/calibrated</td>
</tr>
<tr>
<td></td>
<td>• Simulation tests underway</td>
<td>• Algorithm specifically tuned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Simulation tests underway</td>
</tr>
</tbody>
</table>

Connected Eco-Driving and Eco-Speed Harmonization

Connected Eco-Driving

- Connected Eco-Driving provides customized real-time driving advice to drivers, allowing them to adjust behaviors to save fuel and reduce emissions.
- This advice includes recommended driving speeds, optimal acceleration and deceleration profiles based on prevailing traffic conditions, road grade, etc.
- The application may also consider vehicle-assisted strategies, where the vehicle automatically implements the eco-driving strategy (i.e., change gears, switch power sources, or use start-stop capabilities to turn off the vehicle’s engine while it is sitting in congestion).

Eco-Speed Harmonization

- Eco-Speed Harmonization is similar to current VSL applications, although the speed recommendations seek to minimize emissions and fuel consumption along the roadway.
- Speed harmonization assists in maintaining flow, reducing unnecessary stops and starts, and maintaining consistent speeds, thus reducing fuel consumption, GHG emissions, and other emissions on the roadway.
- Eco-speed limits can be broadcast by roadside equipment (RSE) units (or cellular) and received by on-board equipment (OBE) units or displayed on VSL signs located along the roadway.
Eco-Speed Harmonization

- Leverage connected vehicle technologies to determine eco-speed limits to mitigate the impacts from traffic congestion (resulting from either recurrent bottlenecks or incidents), based on the following information:
 - **Downstream traffic conditions (current focus)**
 - Roadway geometry (e.g., roadway grade)
 - Weather information, and
 - Greenhouse gas (GHG) and criteria pollutant emissions
Eco-Speed Harmonization Algorithm (1)

START

Identify the appropriate RSE based on the vehicle’s location

Communicate with RSE and send status, e.g., speed

Receive target control speed from infrastructure

Run every time step for each equipped vehicle

Yes

Set speed = car-following speed

No

target control speed > car-following speed?

Set speed = target control speed

END
Eco-Speed Harmonization Algorithm (2)

Infrastructure-side Flowchart

1. **START**
2. Communicate with vehicles on the monitored segments
3. Update VMT and VHT during the current updated interval
4. **Reach the end of update interval (e.g., 10 seconds)?**
 - Yes: Update average speed = free-flow speed
 - No: **VHT > 0?**
 - Yes: Update average speed (= VMT/VHT) of the monitored segments
 - No: Broadcast target traffic speed for segments, Reset VMT = 0 and VHT = 0
5. **END**

Run every time step for each roadway segment
Eco-Speed Harmonization Results (1 of 2)

- Example maximum energy savings as a function of traffic volume, with 100% connected vehicle penetration rate (comparing baseline at 60 mph speed limit vs. Eco-Speed Harmonization free flow speed = 50 mph)

- Maximum energy savings result in an approximate 8% to 10% reduction in mobility
- Typical energy savings in the range of 4% to 8% if mobility is kept the same (i.e., Eco-Speed Harmonization free flow speed = baseline 60 mph speed limit)
Eco-Speed Harmonization Results (2 of 2)

- Example energy savings as a function of connected vehicle penetration rate, at high traffic volume of 4800 vph
- Tuned for maximum energy savings with a baseline at 60 mph speed limit vs. Eco-Speed Harmonization free flow speed = 50 mph

![Graph showing energy or CO2 savings as a function of penetration rate for traffic volume of 4800 vph]
Eco-Speed Harmonization Initial Observations

- Maximum energy and CO₂ savings tend to occur at higher traffic volumes (near full capacity) in the range of 5% to 12% with a mobility reduction of ~8%; with no mobility change, energy savings is in the 4% to 8% range
- Energy and CO₂ savings increase with increased penetration rate, maximizing at 100% penetration
- A combination of connected vehicle technology and variable speed limit signs can be used to maximize savings in early deployment
- It is expected that the energy and CO₂ benefits will be slightly reduced with a real-world highway (with varying traffic volume, on-ramps, off-ramps, etc.)
Eco-Cooperative Adaptive Cruise Control (ECACC)

- Coordinate the maneuvers of neighboring vehicles via vehicle-to-vehicle (V2V) communication to encourage eco-friendly operation
- Similar to conventional cooperative adaptive cruise control (CACC): reducing gaps and reaction delays within loosely coupled platoon
- Unlike conventional CACC: “greener” vehicle maneuvers, smoother platoon leader operation
Eco-Cooperative Adaptive Cruise Control (ECACC)

The Eco-Cooperative Adaptive Cruise Control application is an extension to the adaptive cruise control (ACC) concept. Eco-Cooperative Adaptive Cruise Control includes longitudinal automated vehicle control while considering eco-driving strategies. Expanding on existing ACC systems, which use radar and LIDAR measurements to identify the location of the preceding vehicle, connected vehicle technologies can be used to collect the preceding vehicle’s speed, acceleration, and location and feed these data into the vehicle’s ACC. These data are transmitted from the lead vehicle to the following vehicle.

This application allows following vehicles to use CACC aimed at relieving a driver from manually adjusting his or her speed to maintain a constant speed and a safe time gap from the lead vehicle. The Eco-Cooperative Adaptive Cruise Control application incorporates other information, such as road grade, roadway geometry, and road weather information, to determine the most environmentally efficient trajectory for the vehicle.

“Green” lead vehicle maneuvers (e.g., vehicle receives eco-speed limits)

Loosely coupled platoon reduce gaps and reaction delays

“Green” maneuvers to join a loosely coupled platoon

triggering distance

headway

gap

Source: USDOT, July 2014
ECACC Definitions

Definitions:

<table>
<thead>
<tr>
<th></th>
<th>Front Bumper – Front Bumper</th>
<th>Back Bumper – Front Bumper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Headway</td>
<td>Gap</td>
</tr>
<tr>
<td>Distance</td>
<td>Clearance</td>
<td>Spacing</td>
</tr>
</tbody>
</table>

State Machine:

Vehicle directly ahead is within range to trigger CACC

Vehicle behind current vehicle is within range to trigger CACC

1) Leader changes lanes to reach exit ramp

1) A vehicle on an adjacent lane changes lanes directly in front of the current leader
2) The current leader overtakes a CACC equipped vehicle directly ahead
ECACC Algorithm (1)

CACC State Flow Diagram

Start

CACC State != “Leader”?

Get Position and ID of Nearest Vehicle Ahead of Current Vehicle (within V2V range, and on the same lane)

Set Current Vehicle CACC State to “Leader”

Set Current Vehicle CACC State to “Follower”

Store Vehicle Ahead ID & CACC platoon Leader ID

End

NOTE: This loop is executed once a second for every vehicle

A vehicle’s CACC state is updated once a second

NOTE: Initially Set Vehicle CACC State to “None”
ECACC Algorithm (2)

Spatial Regulator with acceleration constraints

CACC “Follower”
Level 2 Diagram

NOTE: The Gap Controller shown here is based on Spatial Regulation

Start

Get Position and Velocity of Vehicle Directly Ahead

Current Clearance = Euclidean Distance Between Current Vehicle and Vehicle Directly Ahead

Current Spacing = Current Clearance - Length of Vehicle Ahead

Target Distance = Current Spacing - Target Spacing

Relative Velocity = Target Distance/2

Set Current Vehicle Speed To: Velocity of Vehicle Directly Ahead + Relative Velocity

End

NOTE: Target Spacing is the sole parameter for Spatial Regulation

A “Follower” Vehicle’s Speed is Updated Once Every Time Step

NOTE: This controller does not explicitly model Gap Regulation
ECACC Video – Low Volume (4,000 vph)

Baseline

Upstream Segment with CACC Platoon Formation

Downstream Segment with CACC Platoons
ECACC Video – High Volume (6,000 vph)

Baseline

Upstream Segment with CACC Platoon Formation

Downstream Segment with CACC Platoons
ECACC on Generic Freeway
Average Travel Time and Savings over Traffic Volume

- 100% penetration rate/compliance rate
- Triggering distance = 40 meters, vehicle spacing = 5 meters
- Constant demand profile
- Homogeneous vehicle type
ECACC on Generic Freeway
Average Energy Consumption over Traffic Volume

- 100% penetration rate/compliance rate
- Triggering distance = 40 meters
- Constant demand profile
- Homogeneous vehicle type

![Average Energy Comparison](image1.png)

![Average Energy % Savings](image2.png)
ECACC on Generic Freeway
Sensitivity Analysis of Triggering Distance (Travel Time Savings)

Travel Time Savings vs Traffic Volume and Triggering Distance

- 20 m
- 30 m
- 40 m

% Savings vs Volume (vph)
CACC on Generic Freeway
Sensitivity Analysis of Triggering Distance (Energy Savings)

Energy Savings vs Traffic Volume and Triggering Distance

% Savings

Volume (vph)

20 m
30 m
40 m
ECACC General Observations

- Note that the aforementioned results are based on:
 - 100% penetration rate and compliance rate, no on-ramp(s)/off ramp(s)
 - No lateral maneuvers (merging, splitting, etc.)

- As expected, increased traffic throughput due to ECACC introduction provides benefits in both mobility and environmental factors

- **Key parameters**: triggering distance of when a vehicle joins a platoon; intra-platoon spacings

- **Best Case**: selection of a long triggering distance encourages platoon formation and improves merging behavior
ECACC – Lateral maneuvers are important

- With on-ramps, off-ramps, multiple lanes with lane drops, lateral maneuvers become necessary
- Lateral maneuvers: merging into a lane with platoons, splitting from a platoon, etc.
- Lateral maneuvers cause additional accelerations and decelerations and therefore slightly reduce the maximum energy savings benefits of ECACC

Example platoon split and merge maneuvers
Penetration Rate Analysis for ECACC

- Energy and CO₂ savings are less than the maximum if the penetration rate of the technology is reduced.
- With fewer equipped vehicles, the number of loosely coupled platoons are reduced.

![Energy Savings vs Traffic Volume and Penetration Rate](image)
Energy and CO₂ savings depend on a number of factors, peaking around 30% for 100% penetration rate on a generic freeway segment without variable traffic demand and on-ramps/off-ramps.

Energy and CO₂ savings maximum at 100% penetration rate, somewhat less with lower penetration rate (e.g., 15% savings at 40% penetration rate).

Lateral maneuvers: energy and CO₂ benefits are reduced with a real-world highway scenario due to varying traffic volume, on-ramps, off-ramps, and increased lateral maneuvers.

Combining Eco-Speed Harmonization (for leader vehicles) and ECACC should provide additive benefits.
Eco-Lanes Modeling Summary Results

<table>
<thead>
<tr>
<th>Eco Lanes Modeling</th>
<th>Generic Freeway</th>
<th>Real-world (California SR-91)</th>
</tr>
</thead>
</table>
| Eco-Speed Harmonization | • up to 12% max energy savings with ~8% reduction in mobility
• 4% to 8% energy savings with no mobility impact | • Expected 3% to 10% energy savings; |
| Eco-Cooperative Adaptive Cruise Control (ECACC) | • Up to 30% energy savings
• Increased capacity (2x) | • Expected 10% to 15% energy savings; improved mobility |
| Eco-Speed Harmonization + ECACC | • Expected 15%+ energy savings | • Expected 10%+ energy savings |
Future Research

- Continue to examine a variety of real-world roadway scenarios to determine overall effectiveness
- Further develop the sophistication of the algorithms to account for all traffic scenarios
- Further develop lateral maneuvers for ECACC
- Apply and adapt the algorithms for arterial roadways:
 - initial eco-speed harmonization for arterials has shown great promise
 - ECACC should provide great energy savings for queues at traffic lights
Lessons Learned

- Eco-Speed Harmonization (ECH) and Eco-Cooperative Cruise Control (ECACC) offer greater opportunities for energy savings, particularly as congestion increases.
- ECACC offers a dual mobility – energy benefit.

Free Flow Traffic Conditions

ECO-LANES

- Connected Eco-Driving
- Eco-Speed Harmonization
- Eco-Cooperative Adaptive Cruise Control

Congested Traffic Conditions

When traffic conditions are severely congested, there are limited opportunities for Connected Vehicle Applications of all types to provide mobility or environmental benefits.
Research Team

- **University of California-Riverside:**
 - Matthew Barth (principal investigator)
 - Guoyuan Wu, Kanok Boriboonsomsin (research faculty)
 - David Kari, Qiu Jin (graduate students)

- **Booz Allen Hamilton:**
 - Sean Fitzgerel
 - Balaji Yelchuru
 - Sudeeksha Murari

- **Many others have contributed:**
 - AERIS research team partners
Contact Information

Eco-Lanes Modeling

- Matthew Barth, UC-Riverside, barth@cert.ucr.edu

AERIS Program

- Marcia Pincus, Program Manager, Environment (AERIS) and ITS Evaluation, US DOT RITA, marcia.pincus@dot.gov
Upcoming AERIS Webinars

- 2014 AERIS Summer Webinar Series
 - Webinar #1: Combined Modeling of Eco-Signal Operations Applications
 Wednesday, June 25th, 2014 at 1:00 pm EST
 - Webinar #2: Preliminary Eco-Lanes Modeling Results
 Wednesday, July 23rd, 2014 at 1:00 pm EST
 - Webinar #3: Preliminary Low Emissions Zones Modeling Results
 Wednesday, August 20th, 2014 at 1:00pm EST

Registration: www.itsa.org/aerissummer2014

- For more information on the AERIS Program and access to past webinars, visit: http://www.its.dot.gov/aeris/