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Presentation Overview

 General Eco-Approach and Departure Concept

 Variations on a Theme: Dimensions of Analysis

 Simulation Modeling Setup and General Results

 Simulation Modeling Sensitivity Analysis

 General Conclusions

 Enhanced Concepts: Combining with Connected Eco-

Driving and Cooperative Adaptive Cruise Control
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Eco-Approach and Departure Concept

Application utilizes traffic signal phase and timing (SPaT) 
data to provide driver recommendations that encourage 
“green” approaches to signalized intersections

example scenarios:

1) Coast down earlier to a red light;

2) Modestly speed up to make it (safely) through the 
intersection on green

Source: USDOT
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Eco-Approach and Departure at Signalized 

Intersections

Source: Noblis, November 2013

Vehicle Equipped with the 
Eco-Approach and Departure 

at Signalized Intersections 
Application

(CACC capabilities optional)

Traffic Signal 
Controller with 
SPaT Interface

Traffic Signal 
Head

Roadside 
Equipment Unit

V2I Communications: 

SPaT and GID 

Messages

V2V Communications: 

Basic Safety 

Messages
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Signal Phase and Timing (SPaT)

• Data are broadcast from road side equipment (connected to 
traffic signal controller) to vehicles (I2V communications)

• SPaT information consists of intersection map, phase and timing 
(10 Hz), and localized GPS corrections

• Can be broadcast locally via Dedicated Short Range 
Communication (DSRC) and/or cellular communications
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Variations on the General Concept

 Signal timing scheme matters: fixed time signals, 

actuated signals, coordinated signals

 Single intersection analysis and corridor-level analysis

 Congestion level: how does effectiveness change with 

amount of surrounding traffic

 Single-vehicle benefits and total link-level benefits

 Simulation Modeling vs. Field Studies: pros and cons

 Vehicle Control: driver advice vs. partial automation

 Communications Method: short range vs. wide-area

 Analysis Approach: increasing incremental complexity 

and using previous results as “building blocks”
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Eco-Approach Scenario Diagram

Intersection of interest
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Eco-Approach Driving Scenario 1 (cruise)

• Vehicle is able to pass through the intersection on 
green phase

• does not need to slow down or speed up

• Best scenario for fuel economy
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Eco-Approach Driving Scenario 2 (speed up)

• Vehicle needs to safely speed up to pass through the 
intersection on green phase

• Energy savings due to not having to stop and idle
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Eco-Approach Driving Scenario 3 (coast down, stop)

…

…

• Vehicle needs to slow down to stop at the intersection
• Energy savings due to slowing down sooner
• Scenario reference: M. Li et al., “Traffic energy and emission reductions at signalized 

intersections: a study of the benefits of advanced driver information,” International Journal of Intelligent 
Transportation Systems Research, vol. 7(1), pp. 49-58, 2009.
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Eco-Approach Driving Scenario 4 (coast down, no stop)

• Vehicle needs to slow down to pass through the 
intersection on green phase

• Energy savings due to not having to idle
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Velocity Planning Algorithm

• Target velocity is set to get through the green phase of the next signal 
(time-distance calculation)

• Initial velocity may be above or below target velocity

vc = the current vehicle velocity

vp = the velocity of the preceding vehicle

vlimit = local speed limit

tH = safe headway time

Reference 1: M. Barth, S. Mandava, K. Boriboonsomsin, and H. Xia “Dynamic ECO-Driving for Arterial Corridors”, Proceedings of the IEEE Forum of 

Integrated Sustainable Transportation, Vienna Austria, 6/2011, 7 pp.

Reference 2: H. Xia, K. Boriboonsomsin and M. Barth, “Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions 

benefits”, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 17(1), 2013, pp. 31 – 41
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Previous Studies & Results with Algorithm

Initial Simulation:

LDV24 
Without With % Diff. 

in Avg. 

p-value of 

t-test Avg. S.D. Avg. S.D. 

Fuel (g/mi) 118.3 13.2 103.8 9.3 -12.3 8.7E-06 

CO2 (g/mi) 371.0 41.2 318.8 25.3 -14.1 3.2E-07 

TT (sec) 456.7 60.7 451.9 56.9 -1.06 0.635 

 references:

S. Mandava et al., “Arterial Velocity Planning based on 
Traffic Signal Information under Light Traffic Conditions”, 
2009 IEEE Intelligent Vehicle Systems Conference, 
October, 2009.

M. Barth et al., “Dynamic ECO-Driving for Arterial Corridors”, 
Proceedings of the 2011 IEEE Forum on Integrated 
Sustainable Transportation (FISTS), Vienna, Austria, June, 
2011.

Real-World Results of FHWA EAR project with BMW, UC 

Berkeley at Richmond Field Station (4/2012):
reference:

H. Xia et al., “Field Operational Testing of ECO-
Approach Technology at a Fixed-Time Signalized 
Intersection”, 2012 IEEE Intelligent Vehicle 
Systems Conference, Anchorage, AK, Sept 2012.

 uninformed informed Improvement 

Fuel 
(l/100km)  

10.23 8.84 -13.59% 

Travel time 
(sec/trip) 

40.69 40.3 -0.96% 
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2012 AERIS Demonstration at FHWA Turner 

Fairbank Highway Research Center

average fuel saved: 18%wireless
On-board 

DSRC
SPaT 

processor

Traffic Signal 

Controller

Vehicle 

computer 

performs 

velocity 

planning

Driver 

display 

advising 

driver

Road-side DSRC

Vehicle

OBD-II data
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Driver Interface used in Demonstration

Speedometer SPaT

Distance to 

intersection

tachometer 

Real-time MPG Vehicle location

Indicator

Intersection location

Indicator

Advisory 

speed 
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Simulation Modeling
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Modeling Objectives

• Conduct detailed simulation modeling and test 
benefits under different traffic conditions, network 
conditions, technology penetration rates, and other 
variables

• Modeling initially focused on a “generic intersection”

• Simulation parameters (car-following logic, lane-
change behavior) calibrated using NGSIM data sets

• Modeling focused on El Camino Real network with 
real-world traffic and network data (Palo Alto, CA)

• Later tie-in with travel demand models and other 
AERIS concepts
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Modeling Setup

• Paramics traffic simulation model with API plug-ins 
(eco-approach method, energy/emissions models)
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Region of Modeling: El Camino Real in 

Northern California
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Modeling Tools and Interaction



Videos

baseline

eco approach & departure



22U.S. Department of Transportation

General Modeling Results:
Hypothetical 11-Signalized Intersection Corridor

 
Baseline Eco-Approach 

 
Improvement 

Avg. S.D. Avg. S.D. 

Fuel (g/mi) 167.87 1.97 146.91 2.56 12.48% 

CO2 (g/mi) 439.60 3.57 381.49 3.72 13.22% 

TTPM (sec/mi) 122.08 1.43 121.18 1.23 0.73% 

 How would this benefit a user?

• Six-mile corridor, average traffic congestion

• Light-duty vehicle, 24 mpg, gasoline costs $4/gallon

• Unequipped vehicle spends $1 in fuel to traverse corridor

• Equipped vehicle spends ~$0.87 in fuel to traverse corridor

• Driving 16,000 miles/year  $346 of savings per year

• SUV vehicle: savings of $560/year

• Fleet operator (150 vehicles): $84,000/year

Single Vehicle Energy, Emissions and Travel Time Comparisons
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Modeling Results: Multiple Intersections

Uncoordinated Signal Control:
• Signal timing is set to be uncoordinated between intersections (no “green 

wave”)

• Eco-approach algorithm applied on all three intersections, cross traffic 
included in analysis 

• The links in this network are short, which affects the effectiveness of the 
eco-approach algorithm

• Typical Fuel (CO2) Savings: 5% - 10% overall

Scenario V/C Penetr% Energy(kJ/mi) CO2 (g/mi) CO (g/mi) HC (g/mi) NOx (g/mi) PM (g/mi) TT/veh

baseline

1.00 0 8997.08 647.70 13.55 0.45 1.87 0.13 125.12

0.77 0 8887.79 640.62 13.69 0.45 1.91 0.13 118.31

0.38 0 8760.11 630.78 13.91 0.44 2.03 0.15 108.16

Eco-Approach

& Departure

1.00 100 8621.25 621.46 11.69 0.42 1.82 0.11 133.60

0.77 100 8425.44 607.35 12.19 0.42 1.55 0.10 121.76

0.38 100 7846.91 564.88 11.06 0.38 1.80 0.12 109.78

saving %

1.00 100 4.18 4.05 13.69 7.19 2.56 11.70 -6.78

0.77 100 5.20 5.19 10.94 7.53 19.07 24.37 -2.92

0.38 100 10.42 10.45 20.50 14.05 11.39 19.68 -1.50
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Modeling Results: Multiple Intersections

Coordinated Signal Control:
• Signal timing is set to be coordinated between intersections (real-world)

• Coordinated signal control results in ~8% fuel reduction over uncoordinated

• Eco-approach algorithm applied on all three intersections, cross traffic 
included in analysis 

• Fuel (CO2) Savings: 4% - 5% overall

Scenario V/C Penetr% Energy(kJ/mi) CO2 (g/mi) CO (g/mi) HC (g/mi) NOx (g/mi) PM (g/mi) TT/veh

baseline

1.00 0.00 8347.75 601.02 13.00 0.41 1.83 0.13 98.94

0.77 0.00 8183.43 589.55 12.98 0.41 1.85 0.13 94.20

0.38 0.00 7910.53 569.18 13.07 0.40 1.69 0.13 90.48

Eco-Approach

& Departure

1.00 100.00 7957.46 574.17 11.33 0.38 1.55 0.10 105.67

0.77 100.00 7742.33 557.89 11.83 0.38 1.41 0.10 103.58

0.38 100.00 7473.06 537.58 10.46 0.36 1.48 0.09 97.59

saving %

1.00 100.00 4.68 4.47 12.80 7.16 15.45 20.84 -6.80

0.77 100.00 5.39 5.37 8.87 7.10 23.48 25.70 -9.95

0.38 100.00 5.53 5.55 19.97 10.36 12.49 25.57 -7.87
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Modeling Results: Penetration Rate

Uncoordinated 
Signal Control

Coordinated Signal 
Control
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Modeling Results: Individual vs. Network Benefits

Total network savings is slightly higher than sum of equipped 
vehicle savings

reference:

H. Xia, et al.,“Dynamic ECO-Driving for Signalized Arterial Corridors and its Indirect 
Network-Wide-Energy/Emissions Benefits”, Journal of ITS, V. 17, No. 1, pp. 31-41, 2013.
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Modeling Results: Communications
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Simulation Modeling Conclusions (1 of 2)

• In general, 5%- 10% fuel savings can be achieved with 100% 
penetration rate of technology

• Eco-approach and departure technology provides an additional 
4% - 5% improvement on top of a coordinated corridor

• Coordinated signal control by itself results in  approximately 
8% fuel/emissions reduction over uncoordinated

• Smaller penetration rate of technology still has a positive 
network effect (non-equipped vehicles also have a slight 
benefit)

• Eco-approach and departure is less effective with increased 
congestion



29U.S. Department of Transportation

Simulation Modeling Conclusions (2 of 2)

• Application benefits are sensitive to communications range 
(when is the information received by the vehicle)

• Application benefits are not very sensitive to communications 
delay

• General Eco-Approach and Departure Application could be 
accomplished without DSRC, instead using a cellular 
communications network

• Enhanced Application (with CACC, etc.) would likely require 
DSRC or a hybrid communication strategy
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Enhanced Simulation Modeling
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Inserting Eco-Approach and Departure into 

Connected Eco-Driving Application

Connected

Eco-
Driving

Eco-Approach 
/Departure

Eco-Speed 
Harmonization

Eco-Driving 
Feedback 
System
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Connected Eco-Driving Application

Eco-speed harmonization 

for freeways

Eco-approach and departure 

(inside V2I communication range)

Eco-speed harmonization for arterials 

(outside V2I communication range)

Eco-Driving feedback for the whole 

network
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CACC-assist and Eco-Approach and Departure

 Note that we have been modeling vehicles in the 

eco-approach and departure scenarios such that 

the vehicles follow the speed profiles exactly as 

specified

 TFHRC demonstration: when a driver followed the 

“speed-advice” speedometer, it was often difficult 

to follow the recommended speed

 Results: typical drivers can’t follow the planned 

trajectories exactly. Comparing typical driver 

following speed advice with exact trajectory 

following, following exact trajectories results in a 

5% improvement in fuel savings. (2014 TRB paper)

 Consider having CACC-assistance when following 

trajectories

Speedometer SPaT

Distance to 
intersection

tachometer 

Real-time MPG Vehicle location
Indicator

Intersection location
Indicator

Advisory 
speed 
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Evaluating benefits of CACC-assist

• Initial Simulation Experiments:

• Isolated intersection

• One lane in each direction

• Link lengths 680m (before and after intersection)

• Speed limit 40mph

• Mainline through signal: green 30s, red 60s

• Traffic demand: 1200 veh/lane/hour

• Typical queues at red lights: ~10 vehicles

• We varied reaction time and headway

Source: Noblis, November 2013

Vehicle Equipped with the 
Eco-Approach and Departure 

at Signalized Intersections 
Application

(CACC capabilities optional)

Traffic Signal 
Controller with 
SPaT Interface

Traffic Signal 
Head

Roadside 
Equipment Unit

V2I Communications: 

SPaT and GID 

Messages

V2V Communications: 

Basic Safety 

Messages
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CACC-Based Eco-Approach and Departure

 For isolated intersection

□ Approach: platoon-based eco-approach

□ Departure: platoon discharges with minimum headway

Manual Driving CACC Driving
Distance

Time

Distance

Time
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Results: Comparing driver HMI and CACC-assist

Improvements due to smoothness, less idle time, better throughput

VMT(mi)
target headway (s)

0.20 0.40 0.60 0.80 1.00

re
ac

ti
o

n
 t

im
e

(s
) 0.00 0.91 0.91 0.91 0.91 0.91

0.25 0.91 0.91 0.91 0.91 0.91

0.50 0.91 0.91 0.91 0.91 0.91

0.75 0.91 0.91 0.91 0.91 0.91

1.00 0.91 0.91 0.91 0.91 0.91

VHT(s)
target headway (s)

0.20 0.40 0.60 0.80 1.00

re
ac

ti
o

n
 t

im
e

(s
) 0.00 106.10 106.70 107.49 108.35 109.11

0.25 106.25 107.00 107.57 108.60 109.55

0.50 106.87 107.76 108.81 110.29 112.34

0.75 107.68 108.68 110.97 115.05 121.74

1.00 108.80 110.28 114.57 125.34 180.08

fuel rate (kJ/mi)
target headway (s)

0.20 0.40 0.60 0.80 1.00

re
ac

ti
o

n
 t

im
e

(s
) 0.00 5182.47 5213.35 5250.33 5292.15 5303.93

0.25 5187.43 5218.96 5256.44 5284.40 5322.03

0.50 5201.99 5232.51 5264.80 5318.77 5388.72

0.75 5217.89 5248.50 5316.99 5415.67 5569.58

1.00 5240.09 5293.02 5396.92 5619.35 6630.72

CACC

HMI

21.84%
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Lessons Learned:

 The Eco-Approach and Departure Application is very 

promising, showing fuel and CO2 reductions in the 

range of 5% to 10%, depending on conditions

 The application has the potential to be a near-term 

deployable connected vehicle application:

 low cost

 doesn’t require high penetration rates

 doesn’t require new communication infrastructure 

at every intersection
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Future Work:

 Integrate modeling of the Eco- Approach and 

Departure Application with other Eco-Traffic Signal 

Applications to determine composite benefits

 Continue to evaluate the benefits of enhancing Eco-

Approach and Departure with partial automation 

(CACC)

 Place research results in context with other research 

programs, e.g., domestic and international

 Demonstrate the concept with an AERIS Prototype
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Future Work: Analyzing other Dimensions

Single 
Vehicle

Vehicle 
in Traffic

Fixed-time 
Signals

Actuated 
Signals Vehicle Control:

Driver with HMI

ACC-assist

CACC-assist

Field study 2012 
(FHWA EAR P1, AERIS)

Simulation 
modeling 2012

(AERIS)

Simulation 
modeling 2013 

(AERIS sensitivity 
analysis)

Field study 2014 
(FHWA-EAR-P2 @PATH)

Simulation 
modeling Fall 

2013 (FHWA-EAR-P2)

Field study 2014 
(FHWA-EAR-P2 ECR)

Simulation 
modeling 2014 

(FHWA-EAR-P2)
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Contact Information

Eco-Approach and Departure at Signalized Intersection:

• Matthew Barth, UC-Riverside, barth@cert.ucr.edu

AERIS Program: 

• Marcia Pincus, Program Manager, Environment (AERIS) and ITS 
Evaluation, US DOT RITA, marcia.pincus@dot.gov

mailto:barth@cert.ucr.edu
mailto:marcia.pincus@dot.gov


42U.S. Department of Transportation

Upcoming AERIS Webinars

Webinar #2: Incorporation of Stakeholder Input Into the AERIS Program

Wednesday, December 4th, 2013 at 1:00 pm ET

Webinar #3: Preliminary Eco-Traffic Signal Timing Modeling Results

Wednesday, January 29th, 2013 at 1:00 pm ET

Webinar #4: Preliminary Eco-Traffic Signal Priority (for Transit and 

Freight) and Connected Eco-Driving Modeling Results

Wednesday, February 12th, 2014 at 1:00 pm ET

Webinar #5: A Comparison of US and EU Connected Vehicle 

Environmental Research Activities

Wednesday, March 12th, 2014 at 1:00 pm ET

Registration
Persons planning to participate in the webinar should register online at 

www.itsa.org/aerisfall2013

http://www.itsa.org/aerisfall2013

