DMA Webinar Series

IDTO Bundle

Ron Boenau
Senior Transportation Systems Manager
Special Operations, FTA

February 17, 2015
TODAY’S AGENDA

- DMA Program Overview

- Prototype Design and Demonstration
 - IDTO Bundle Overview
 - Prototype Description and Current Project Status

- Impact Assessment
 - Current Project Status of Impact Assessment
 - Testing Results and Impacts/Benefits from IA

- Stakeholder Q&A
 - We can only answer the questions related to the DMA program.
 - We cannot answer any questions related to the CV Pilots.
DMA Program Overview
DYNAMIC MOBILITY APPLICATIONS PROGRAM

- **Vision**
 - Expedite development, testing, commercialization, and deployment of innovative mobility application
 - maximize system productivity
 - enhance mobility of individuals within the system

- **Objectives**
 - Create applications using frequently collected and rapidly disseminated multi-source data from connected travelers, vehicles (automobiles, transit, freight) and infrastructure
 - Develop and assess applications showing potential to improve nature, accuracy, precision and/or speed of dynamic decision
 - Demonstrate promising applications predicted to significantly improve capability of transportation system
 - Determine required infrastructure for transformative applications implementation, along with associated costs and benefits

- **Project Partners**
 - Strong internal and external participation
 - ITS JPO, FTA, FHWA R&D, FHWA Office of Operations, FMCSA, NHTSA, FHWA Office of Safety
DMA PROGRAM APPROACH TO OVERCOMING TWO KEY CHALLENGES TO APPLICATION DEPLOYMENT

- **Challenge 1 (Technical Soundness)**
 Are the DMA bundles technically sound and deployment-ready?
 - Create a “trail” of systems engineering documents (e.g., ConOps, SyRs)
 - Share code from open source bundle prototype development
 (OSADP website: http://www.itsforge.net/)
 - Demonstrate bundle prototypes (in isolation)
 - Field test integrated deployment concepts from across CV programs

- **Challenge 2 (Transformative Impact)**
 Are DMA bundle-related benefits big enough to warrant deployment?
 - Engage stakeholders to set transformative impact measures and goals
 - Assess whether prototype show impact when demonstrated
 - Estimate benefits associated with broader deployment
 - Utilize analytic testbeds to identify synergistic bundle combinations
DMA Bundles and Applications

<table>
<thead>
<tr>
<th>DMA Bundle</th>
<th>Description</th>
<th>Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRATIS</td>
<td>Freight Advanced Traveler Information Systems</td>
<td>Freight-Specific Dynamic Travel Planning and Performance, Drayage Optimization (DR-OPT)</td>
</tr>
<tr>
<td>IDTO</td>
<td>Integrated Dynamic Transit Operations</td>
<td>Connection Protection (T-CONNECT), Dynamic Transit Operations (T-DISP), Dynamic Ridesharing (D-RIDE)</td>
</tr>
<tr>
<td>R.E.S.C.U.M.E.</td>
<td>Response, Emergency Staging and Communications, Uniform Management, and Evacuation</td>
<td>Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG), Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE), Emergency Communications and Evacuation (EVAC)</td>
</tr>
<tr>
<td>INFLO</td>
<td>Intelligent Network Flow Optimization</td>
<td>Dynamic Speed Harmonization (SPD-HARM), Queue Warning (Q-WARN), Cooperative Adaptive Cruise Control (CACC)</td>
</tr>
<tr>
<td>Enable ATIS</td>
<td>Enable Advanced Traveler Information Systems</td>
<td>EnableATIS (Advanced Traveler Information System 2.0)</td>
</tr>
</tbody>
</table>
DMA Prototype Development Activity

EnableATIS: SmartTrAC (University of Minnesota)
EnableATIS: CloudCar (MIT)
R.E.S.C.U.M.E. National Capital Region
IDTO Columbus, OH Central Florida

INFLO S/Q Seattle, WA
MMITSS Anthem, AZ Northern CA
FRATIS Los Angeles, CA South Florida Dallas, TX
IDTO Bundle Overview
IDTO Bundle Description

- The Integrated Dynamic Transit Operations (IDTO) Bundle provides benefits to travelers and transportation service providers by:
 - Bringing together public and private-sector transportation provider information and operations
 - Leveraging the widespread and growing adoption of smartphones as a travel planning and in-trip notification tool.
 - Building on available standards and open-source tools
 - Integrating three travel-related apps that individually offer significant value, and when integrated, provide even greater benefits

<table>
<thead>
<tr>
<th>T-CONNECT (Connection Protection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases the likelihood of making successful transfers by monitoring inbound and outbound vehicles, as well as travelers, determining if/how a connection can be preserved, and initiating the necessary notifications to these parties to support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T-DISP (Dynamic Transit Operations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For travelers, T-DISP provides an ability to access real-time information about available travel options in order to best manage their commutes.</td>
</tr>
<tr>
<td>For an agency, T-DISP extends demand / response services to support dynamic routing and scheduling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D-RIDE (Dynamic Rideshare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New, more efficient approach to rideshare concepts including real-time scheduling</td>
</tr>
</tbody>
</table>
IDTO Development Team

Prototype Development Team
- Battelle Memorial Institute
- TranSystems (Transportation Consultants)
- Ohio State University Transit Lab

Demonstration Locations
- Columbus, Ohio & Central Florida (Orlando area)

Demonstration Partners
- Central Ohio Transit Authority (COTA)
- The Ohio State University Campus Area Bus Service (CABs)
- Capital Transportation (Private demand response provider)
- LYNX (Orlando transit provider)
- Zimride (Ridesharing service)
IDTO Application Concepts

- Integrate Schedule and AVL Data from Transit / Transportation Service Providers
- Create interface to ‘booking’ tools for demand/response and ride share providers
- Integrate all providers into Smartphone-based travel planning tool
- Traveler enters to/from and time information
- System provides available routes / modes
- User selects and ‘saves’ trip
- System monitors traveler and providers to coordinate transfers
- If necessary, system notifies dispatch to request hold at a stop
- Dispatch accepts/declines
- Traveler is notified in real-time
User Interface Example

- Single user interface for traveler to plan trips, both recurring and one-time for all three applications.
- Provides option to use local transit, demand/response services, rideshare, or a combination of all of these modes as part of a trip.
- Integrates multiple providers and modes.
- Provides status indication of trip start, transfers, and T-Connects.
- Available for Web, iOS or Android.
- Traveler-Owned Device (downloadable application).
IDTO Application Concepts

Mobile Data Terminal Example for Transit Driver

- Solution for transit providers lacking CAD/AVL
- Android-based LTE Tablet (Nexus 7) with custom IDTO application
- Provides AVL capabilities in low-cost manner
- Driver protects transfer on behalf of rider
- Interface allows for:
 - Viewing Current Bus Schedules and ETAs
 - Trip Planning: Can I pick up another customer?
 - Transfer Status
IDTO Application Concepts

Dispatcher Interface Example

- Dispatcher Interface is step toward full CAD/AVL integration
- Implemented as web-based portal
- IDTO-specific iPad devices installed at provider
- Simple touch-screen interface displays:
 - Incoming Requests & Approved Transfers
 - Two Actions: Accept or Reject
 - Auto-reject if no response
IDTO Prototype Objectives

Objectives

- Provide dynamic scheduling, dispatching, and routing capabilities
- Enable and ‘protect’ multi-modal and multi-agency transfers
- Facilitate dynamic ridesharing
- Integrate all of these features into a single system, for the benefits of both travelers and operators
IDTO Prototype Key Hypotheses

Hypotheses

- Multiple Agencies and multiple modes can be coordinated in a single mobile application
- Given necessary AVL data and policy agreements, connections can be protected

Enter Trip Start / End

View and Select Route/Providers

View T-CONNECT enabled trip details

Receive real-time status during trip
IDTO Demonstration

- Two demonstrations locations
 - Columbus demonstration: April 29, 2014
 - Central Florida demonstration: November 5, 2014

- Objectives
 - Show searching for and scheduling a multi-agency and/or multi-modal trip (T-DISP)
 - Show searching for trips using traveler’s current location
 - Show notifications including a trip start notification and connection held notification (T-Connection request accepted)

- Scenarios tested
 - Trips that include T-connection
 - Trips without T connection
 - T-Connection requested on behalf of rider via incoming vehicle mobile data terminal (MDT)
IDTO Demonstration - Columbus

- Scheduled OSU CABS to COTA route
- Departure / Arrival Times and Walk distance included
- Scheduled UCF Shuttle to LYNX route
- Also demonstrated (not shown), SunRail train to LYNX route
- Departure / Arrival Times and Walk distance included
IDTO Code/Data Availability

IDTO Source Code
- Available on Open Source Application Development Portal (OSADP)
 - FHWA/DOT software repository and collaboration environment
- In the process of being approved
- Projected date: March 2015

IDTO Data
- Available via the Research Data Exchange (RDE)
 - https://www.its-rde.net/home
 - FHWA/DOT transportation data sharing system
- IDTO is in the process of being prepared and packaged for publication
- Projected date: Spring 2015
IDTO Future Enhancements

- Use Bluetooth LE sensors on vehicles to determine when a traveler gets on and off
- Sensor technology will give app real-time knowledge of when passengers board—no longer need to make assumptions for connections
- Link technology with Farebox systems

One integrated vision of IDTO
IDTO Impact Assessment
IDTO Impact Assessment Description

- **Assessment Team** (Volpe Center)
- **Objectives:**
 - Assess impacts of IDTO on:
 - Service quality for transit riders (travel time, waiting time, transfer time, access to transit vehicles and destinations)
 - Transit service effectiveness (moving passengers through the system, utilizing vehicles and staff)
 - Cooperation among transit agencies (planning, information sharing, optimizing services)
 - Estimate benefits linked to impacts within the demonstration (travel time savings, reliability gains, changes to operating costs)
 - Project region-wide benefits for full-scale IDTO use
KEY HYPOTHESES, PERFORMANCE MEASURES AND TRANSFORMATIVE TARGETS

- **Key Hypotheses:**
 - IDTO reduces average transit travel times through improved connections
 - IDTO improves the reliability of transit trips
 - IDTO increases passenger throughput

- **Performance Measures:**
 - Travel time for IDTO users
 - Travel time for passengers affected by IDTO usage
 - Range of travel times for trips taken by IDTO users
 - Passengers per vehicle per hour

- **Transformative Targets:**
 - Reduced passenger waiting times
 - 90% of feasible protected connections completed
 - Reduced transaction times from request to confirmation of trip status
METHODOLOGY

- **Planned Approach:**
 - Evaluate vehicle and transaction data by location for demand, effectiveness, usage patterns
 - Conduct interviews with participating organizations to gauge effectiveness and inter-organizational cooperation/collaboration
 - Estimate differences in travel times and reliability for IDTO users versus non-users
 - Project impacts across regions by scaling observations from the demonstration to a hypothetical full-scale use of IDTO

- **Limitations to Planned Approach**
 - Most hypotheses cannot be measured with existing data.
 - Critically, we cannot isolate circumstances under which IDTO offers strong value (e.g., when T-CONNECT reduces transfer time and net travel time relative to alternative strategies).
ADDITION OF STATISTICAL TOOL

- Volpe will expand the analysis by developing and implementing a statistical analysis tool.

- The statistical analysis tool is designed to address unmeasurable hypotheses by:
 - Linking known factors in the demonstration to plausible assumptions for missing data and components
 - Evaluating system performance and user outcomes under a range of scenarios
Key Impact Assessment Findings

- All current findings are limited due to data constraints

- **T-CONNECT:**
 - Some users indicated that there is high value added by knowing when connecting vehicles will arrive, and whether a connection is feasible
 - The value of information on connections led to new travel patterns (travel quality dependent upon information via T-CONNECT), repeat usage, and a limited number of protected connections

- **T-DISP:**
 - There was demand for the trip-planning features of T-DISP
 - No demand-response service in the demonstration

- **D-RIDE:**
 - No rideshare service in the demonstration
KEY IMPACT ASSESSMENT FINDINGS

- Conditions where IDTO offers value:
 - Hypothesis: under peak demand, during system disruptions
 - Observed: data limited to qualitative information on adjusted travel patterns that optimize based on information about connecting vehicles

- How IDTO is used:
 - Most frequently: trip planning
 - Most advanced: persistent (limited) demand for T-CONNECT during trips from work to home
KEY IMPACT ASSESSMENT FINDINGS

- Institutional Observations:
 - Data access can be more difficult than expected
 - Elements of data may diverge from plans due to institutional concerns
 - Risk of participating organizations withdrawing from demonstration/operation

- Other Observations:
 - T-CONNECT can offer value; the challenge is finding circumstances where a benefit can be provided beyond what the system is already producing
 - Information can matter to users
 - Agencies see a benefit, and are willing to work with outside groups and to share information to realize the benefit
 - Agencies desire increased collaboration to increase efficiency
IDTO Lessons Learned

- IDTO can serve as a single-source for accessing available transportation options in a region

- IDTO utilizes information that most agencies/providers already publish to the internet, some ‘standard’, most not.

- However, it requires flexibility / changes in policy to support T-CONNECT

- Also needs to consider user privacy concerns

- Full integration with CAD/AVL systems a necessary next step

- As is truly creating standards for the data exchange
IMPLICATIONS FOR DEPLOYMENT

- Agency / Partner Cooperation
 - Requires commitment to share data and to interact with the 3rd party IDTO “provider”

- Traveler Participation
 - Passenger apprehension sharing location data

- Availability of Key Information
 - IDTO is dependent of having both “static” Schedule Information as well as current ‘Arrival Time’/AVL data

- Standardization of the Information
 - Industry initiatives such as the General Transit Feed Specification (GTFS) allow for a common format to enable agencies to share information, however..
 - GTFS is not a ‘standard’ and as such, may not be a long term solution
 - GTFS-Realtime is a step towards obtaining current Arrival Time information, but is not optimal for this purpose

- Transferability / Scalability
 - IDTO was designed with the requirement that it support deployment in more than one region and with varying types of transportation modes and operators.
Stakeholder Q&A
CONTACTS

DMA Program
Kate Hartman, DMA Program Manager, ITS Joint Program Office
(202) 366-2742, Kate.Hartman@dot.gov

Webinar Speaker
Ron Boenau, (202) 366-0195, Ronald.Boenau@dot.gov

DMA Website
http://www.its.dot.gov/dma/

Battelle Memorial Institute: Tom Timcho (Project Manager)

Volpe Center: Lee Biernbaum (Project Manager), Sean Puckett (Primary Investigator), Greg Bucci (Economist)