System Requirements & Design

GWAAR TMCC of Southern Wisconsin
Table of Contents

No table of figures entries found. ... Error! Bookmark not defined.

Overview ... 4
 Methodology ... 4
 Needs and Requirements Analysis ... 5
 System Data Flow Diagram .. 8
 Operational Scenarios .. 8
 Proposed System Overview ... 9
 Mobility Management Office Module .. 10
 Transportation Provider Module ... 11
 Common Service Bus .. 13
 Service Bus Functionality .. 13
 Data Entity Descriptions ... 14

System Overview ... 15
 Mobility management office suite ... 15
 Transportation provider suite .. 15
 Transportation provider driver module .. 15
 API facade service ... 16

Prototypes and Demonstration Scripts ... 17
 Mobility management office suite ... 17
 Logging a phone call and creating a ride request ... 17
 Sharing Data ... 17
 Setting permissions and data masking ... 17
 Creating a new order from a previous order ... 18
 View provider details and edit service area ... 18
 Inspect Ride Requests on Map .. 18
 View other pickups and drops near a specific ride .. 18
 Transportation provider suite ... 18
 General UI Tour ... 18
 Transportation provider driver module ... 19
 Mobile UI Tour ... 19
 Driver Desktop UI Tour ... 19

Component Overview ... 20
 Geolocation Services .. 20
 Datastore Services ... 21
 Authz Services .. 21

Appendix A: Annotated Screenshot Excerpts ... 22
 Mobility Office - Ride Request Details .. 22
 Mobility Office - Provider Map .. 23
 Mobility Office - Provider Details .. 24
 Provider – Map ... 25
 Provider – Driver Qualifications ... 26

Appendix B: Current and Future Workflow Diagrams .. 27
List of Tables
Table 1: User Needs .. 5
Table 2: Requirements Mapped to User Needs .. 7

List of Figures
Figure 1: The Current Workflow. The current workflow of a transportation request. See Appendix B for larger format ... 4
Figure 2: GWAAR Collaborative Common Fleet Information Platform .. 8
Figure 3: The Future Workflow ... 9
Figure 4: Proposed System Overview ... 10
Figure 5: Mobility Manager System Modules ... 10
Figure 6: Mobility Vendor System Modules .. 12
Figure 7: Shared Service Bus Components ... 13
Figure 8: Organizing multijurisdictional trip (future state) ... 15
Figure 9: Component Overview .. 20
Overview

This document describes the design of a multi-module, multi-tenant passenger transportation tracking system designed to facilitate resource sharing between stakeholder agencies. This design was informed by the requirements identified through several iterative collaborative processes with stakeholders.

Methodology

As described in the Concept of Operations Deliverable, preliminary user operations workflow (See Figure 1 below), needs, and concerns were identified through a series of telephone and in-person interviews with stakeholders.

These needs were explored, refined and prioritized during an all-day design sprint (November 7, 2017) with representatives of stakeholder groups. Preliminary requirements derived from user needs were developed into an initial set of wireframe designs and a description of features.

<table>
<thead>
<tr>
<th>ID</th>
<th>Stakeholder Needs</th>
<th>Priority</th>
<th>Stakeholder</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Improved ease and accuracy in tracking all requests for service</td>
<td>High</td>
<td>Mobility manager</td>
</tr>
<tr>
<td>N2</td>
<td>Improved tools to locate providers to service transportation requests</td>
<td>High</td>
<td>Mobility manager</td>
</tr>
<tr>
<td>N3</td>
<td>Improved coherence and completeness of tracking information for each transportation request, including those that weren’t serviced</td>
<td>High</td>
<td>Mobility manager</td>
</tr>
<tr>
<td>N4</td>
<td>Improved coherence and completeness of billing information for each</td>
<td>High</td>
<td>Mobility manager</td>
</tr>
</tbody>
</table>
translation request, including those that weren’t serviced.

N5 Improved tools to track contact with the public, to identify common issues and ensure service needs are met

N6 Improved tools to report on types of rider requests received.

N7 Improved ease to locate information about specific rides, clients and providers.

N8 Provide a reliable system that remains available to agencies

N9 Provide a system that is available into the future for as long as the institution is willing to support it

N10 Agencies need to enforce the authority of their county policy regarding access to data for which the county is custodian.

N11 Build in customizations that allow the system to be more easily integrated into an existing or growing set of support systems.

N12 Functionality should be adaptable to level of technology infrastructure available

N13 There should be multiple ways to import and input data to the system, both in real time and in batch

N14 The system should be easy to maintain from an operational point of view.

Table 1: User Needs

Needs and Requirements Analysis
The ordered set of priorities derived from the November design sprint formed the basis for transforming identified Stakeholder Needs into System Design Requirements. The tables below, which map the Needs to Design Requirements, will form the basis of the future Requirements Traceability Matrix.

Identified needs were broken out into four types of requirements: Functional, Interface, Constraint, and Performance. Data requirements were captured in UML format data entity diagrams.
<table>
<thead>
<tr>
<th>ID</th>
<th>Feature</th>
<th>Maps to</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>The system shall eliminate duplicate data entry where possible, using type ahead and prediction strategies for recurring data (like common locations, requests that replicate previous requests, etc.)</td>
<td>N1</td>
</tr>
<tr>
<td>F2</td>
<td>The system shall automate generation of regularly scheduled requests.</td>
<td>N1</td>
</tr>
<tr>
<td>F3</td>
<td>All transportation providers available to system participants should be included in a single data archive that is searchable by location, time, rates, eligibility and passenger requirements</td>
<td>N2</td>
</tr>
<tr>
<td>F4</td>
<td>Transportation requests need to be tracked from request to reconciliation for billing.</td>
<td>N3, N4</td>
</tr>
<tr>
<td>F5</td>
<td>Requests that couldn’t be serviced should be recorded, along with the reason they couldn’t be serviced (providing data for further needs assessments and planned service expansions).</td>
<td>N3, N4</td>
</tr>
<tr>
<td>F6</td>
<td>The system shall have CRM(^1)-like capabilities to track repeat contact with clients with references to all of their past contacts and requests.</td>
<td>N5, N6</td>
</tr>
<tr>
<td>F7</td>
<td>The system shall provide a facility to search archived data related to a given Mobility Management office (including clients, providers and rides requested through their office) by commonly known attributes such as names, dates/times and geographic locations.</td>
<td>N7</td>
</tr>
<tr>
<td>F8</td>
<td>The system shall provide a facility for agencies to set sharing permissions on client and ride data attributes to be shared/masked with/from other stakeholders.</td>
<td>N10</td>
</tr>
<tr>
<td>I1</td>
<td>The system shall provide external APIs for most system tasks</td>
<td>N11</td>
</tr>
<tr>
<td>I2</td>
<td>The system shall implement task-triggered web hooks for utilization by authorized external entities</td>
<td>N11</td>
</tr>
<tr>
<td>I3</td>
<td>The system shall ways to include additional arbitrary tracking data to domain objects like clients and rides by authorized external entities</td>
<td>N11</td>
</tr>
<tr>
<td>I4</td>
<td>Provide tabular export of data entities accessible via user interface.</td>
<td>N13</td>
</tr>
<tr>
<td>I5</td>
<td>System should be capable of triggering user-defined web hooks upon certain events</td>
<td>N13</td>
</tr>
<tr>
<td>I6</td>
<td>System should have a comprehensive external API for integration purposes.</td>
<td>N13</td>
</tr>
</tbody>
</table>

\(^1\) Customer Relationship Management
The software should be licensed as a set of open source projects.

A consortium of participating stakeholders should be encouraged to work as a group to provision for the ongoing support of the SDLC.

All system components should be cloud based.

 Deployments and provisioning should be automated and self-repairing.

The call center system shall support real time, efficient workflow, while in contact with the client.

All services and data archives should be deployed in a replicated manner to ensure availability.

The system should not require mobile tracking or GPS to function effectively.

The system should be able to take advantage of mobile tracking and GPS when they are available, such as an authorized individual driver with their own smartphone.

Table 2: Requirements Mapped to User Needs

Utilizing the needs and requirements data gathered from design sprint participants, a set of interactive high-fidelity wireframe prototypes have been developed to engage project stakeholders in additional design iterations. Data entity diagrams in UML format are being kept in sync with the design expressed in the wireframes as changes are made in response to stakeholder feedback.
Operational Scenarios

The future workflow of a transportation request through a Mobility Management Office below, suggests multiple points of automation of the current workflow, offering potential efficiencies, eliminating redundant data entry, diminishing need for repetitive phone calls (“phone tag”), and reducing error.
Figure 3: The Future Workflow

The proposed solution provides a basic level of support for computer-assisted ride scheduling and tracking for mobility managers and participating transportation providers. Providers would have the option of integrating any current software systems with the TMCC through several means, including batch export/import and potentially more immediate connections, such as web hooks or messaging queues, in later iterations of the software.

The software itself shall be open sourced under a license yet to be chosen, ensuring that access to the software will be available into the future, as well as enabling ongoing development, both volunteer and sponsored. The two local modules of the software, the Mobility Management office suite and transportation provider module, can be self-hosted by participants, or groups of stakeholders may organize a shared hosting arrangement.

An additional set of modules is meant to be used in common by all participants which provides a service bus of common services used to share rides and other information between participating systems, subject to HIPPA safeguards. This portion would be managed by a delegated authority of the group, likely one of the Mobility Management offices.
Figure 4: Proposed System Overview

Mobility Management Office Module

Mobility Management offices often need to provide a variety of transportation solutions to the clients who contact them for assistance, including scheduling rides with participating transportation contractors, but also distributing bus passes, arranging travel training, and reserving seats on scheduled group rides. The system will provide a CRM-style client tracking module that integrates all of the
information that a Mobility Management office might need about a client, including personal and contact information, ambulation status and other special needs, and basic program qualification attributes, such as age, income and veteran status.

All contact with the client will be connected to the data listed above, so that a comprehensive view of the client’s activity with the office is available in one place. Previous ride request history, phone calls and queries, and information from contracted vendors related to the client will help the Mobility Manager work with the client effectively.

The Mobility Management modules of the system will be able to collect and track client information, ride requests, ride assignments to providers, and invoices and reimbursement statements from providers. The management software would facilitate expenditure tracking and reporting within an arbitrary number of funding program budgets. This will greatly simplify the process of processing invoices received from providers that might draw from more than one funding program, as funding can be more easily tracked at the ride level.

Requests for contracting service with participating providers will be done ‘in-system’, with a request record in one system leading to the creation of a ride contract in the other. For providers with their own systems, other means of request communication will be provided, including email, web hook, and/or SMS text message. Each ride request will be assigned a tracking number that must accompany the subsequent invoice for it, so that even transmission through low-fidelity means such as faxes and phone calls will allow later tracking of expense to request, even if manual reconciliation is required.

Integrated together, the client -> provider -> ride -> funder tracking workflow will be able to provide the mobility office with a high-level view of different trends, discover outliers such as two different transportation providers claiming very different distances/times between the same points, identify patterns of service abuse, and provide background documentation and monitoring of unexpected budgetary impacts.

Mobility Management offices will be able to create Transportation Provider accounts for their subcontractors authorizing them to use the system, with restrictions, as needed including for business that does not involve the Mobility Management office.

Transportation Provider Module

The Mobility Vendor System Modules, or the Transportation Provider portion of the software will function as a stand-alone ride scheduling system, with integrations to the Mobility Management system used by the local stakeholders. It would furnish smaller providers, especially owner/operators with fewer than 25 vehicles, with all of the basic software tools they need to conduct a scheduled ride operation.

These modules will require no additional technology or equipment other than access to the internet and a modern web browser. It will include an interface for transportation schedulers and dispatchers to track ride assignments to drivers, as well as an optional mobile-friendly interface for drivers to track the status of their assignments. If some drivers do not have access to a computer or the internet, the ride status can be updated at the time that the drivers turn in their ‘paperwork’, whether on paper or in a web browser at the agency office.
This ride scheduling system must serve all of the critical needs of a small operation, and it must save more work than it creates, even at the smallest single-vehicle scale, else it will not serve the purpose of increasing the quality of data available to mobility managers. On that smallest level, the provider module will be the way in which small providers receive requests from the mobility office, as well as the means by which they submit their reimbursement invoices.

The module will provide a means of associating a billing account with a ride request. The mobility office will be one of the billing accounts available in the ride scheduling module. The provider can add additional billing accounts for private sector work, or for work separate from the mobility office. This allows the provider to grow while continuing to use the proposed software solution, rather than adopting a commercial software that may not be as compatible with the common fleet information platform shared by the stakeholder agencies. This will lead in the longer term to uniformity which will permit greater coordination across the region and beyond. Rides billed to the mobility office’s programs will be automatically imported into the mobility office module each billing period, such as monthly.

Associated trip data, such as rider information, will be synced from one module to the other, allowing for only selected details to be shared with the provider, according to each county/agency’s information policy, yet updated information can propagate in both directions. For example, Medicaid numbers may be withheld from providers who do not provide Medicaid-related services, even though a given client may have the same unique identifier in both the Mobility office system and the provider’s system. Similarly, if a provider discovers that a client’s ambulation status has changed, their own data update will propagate back to the Mobility office data store.

Alternatively, a provider may have existing ride scheduling and dispatching software, or may have business requirements that the proposed system will not provide. This provider may use the same provider account to download trip assignments in batch as well as upload invoices to the Mobility Management office for payment. Future iterations will treat this sort of account as a service account, and it will be used to assign and manage authorizations to integration APIs.

If the Mobility Management office is also a transportation provider, the provider portion of the system can be used by the Mobility Management office for ride scheduling and dispatching.
Common Service Bus

Figure 7: Shared Service Bus Components

The shared Service Bus is a set of software applications, protocol specifications and data formats that facilitate sharing transportation resources among program participants. The Service Bus functions as both a cache and an authorization gateway for information that was generated by connected installations of the Mobility Manager/Transportation Provider platform, or by other API compatible systems and adapters.

The Service Bus specification\(^2\) will include the definition of a vocabulary of data entities required for sharing transportation resources such as rides and providers. Each data entity will specify a minimum set of data attributes that the API user may provide for each entity, such as Riders and Ride Requests.

Program participants will manage their own information-sharing policies that will determine the level of information that is shared for a given ride request, such as client last names, home addresses, or cell phone numbers. This will allow each participating mobility management office to remain the custodian of their own data and in alignment with local policy.

Service Bus Functionality

Geospatial Services
- Map location database to support a shared map-centric set of transportation related knowledge of use to both providers and Mobility offices, such as information about accessibility/ease of access of various hospital entryways, hours of operation for clinics, etc.
- Map Overlay Service, to provide a KML-type data overlay for Google maps and compatible services that can contain information drawn from elsewhere in the system, such as provider service areas and current cross-jurisdictional and shared ride requests.

Ride Request Services
- Ride Sharing Platform
 - Requests in need of service
 - Information will be drawn from Mobility Manager and Vendor systems, based on what each office is willing to/allowed to share, based on county/agency policy.
- Routing Services

\(^2\) See Appendix H, Draft Service Bus Specification
• Assists finding service providers for cross-jurisdictional or long-distance rides, also looks for shared ride requests that might be compatible.

Transportation Resource Database

- System-wide Database of Transportation Providers
 - Searches by service area, capabilities, rates, other qualifications
 - Provides information drawn from Mobility Manager and Vendor systems.
- Shared Knowledge Base of Transportation Funding Programs

Data Entity Descriptions

Transportation Provider

A provider represents a resource that can provide transportation from one point to another. It might be a large, multivehicle fleet of paratransit vans, or a single retired volunteer with a car. Each participating Mobility Management Office will periodically submit and sync their own list of local providers with the central Service Bus. Provider data will include enough information to generally qualify them or disqualify them for a given ride assignment. Some providers, such as cab companies or municipal bus companies, may accept ‘blind’ orders without an acceptance approval step, while most others will require some direct contact to check availability for a given transportation request.

Client

A client is a member of the public that uses the services of one of the mobility management offices in such a way as to require their information be imported to the central system. Neither the Mobility Management Office or Transportation Provider modules routinely export client information to the centrally held data store, as opposed to each other. The only times this is done are when a Mobility Management Office user sends in a sharing request for one of the client’s rides. The information that is held centrally is restricted to that required to service the client’s transportation needs, such as how to contact them at pickup, emergency information, etc. If further information is required to service a ride, it must be obtained through the Mobility Management Office that arranged the funding and the request for the ride.

Funder

A funder represents a means of funding a transportation request, such as a grant program or a budget account. It may have a variety of restrictions and qualification attributes, such as geographic limits, per-request reimbursement limits, targeted purposes or populations, and annual budget limits. Funder entities are initially created by Mobility Management offices and synced up with the central Bus in a manner similar to providers.

Ride Request

A ride request represents a transportation need from a client that has been approved for service and funding by a Mobility Management Office, but requires a provider to service the ride. It contains references to the client, the funder paying for the ride, and the provider servicing the ride. The shared Service Bus allows ride requests generated for clients in one deployment of the Mobility Management Office system to be offered to providers associated with other participating Mobility Management Offices, and facilitates their cross system tracking and fulfillment.
System Overview

There are four integrated modules, described below, available to system participants: a mobility management office suite, a transportation provider suite, a transportation provider driver module, and an application programming interface (API) facade service. One or more modules might be used by a given entity; for example, since many ADRCs also manage their own paid or volunteer fleets of drivers, all four applications might be used by an ADRC. All share a common data set and user authentication system.

Mobility management office suite
The mobility management office application provides a CRM-like call center interface to log contact with clients and provision transportation services for them as needed. It manages tracking requests for transportation with transportation vendors and volunteer drivers, and provides tools for invoice reconciliation and cost tracking.

Transportation provider suite
The transportation provider application provides a finely grained workflow to assign transportation orders to individual drivers, both ahead of time and in real time.

Transportation provider driver module
The driver module provides a mobile-ready interface to a single driver’s view of the system, with tools to track ride events, such as picking up or dropping off, and giving the driver a way to record the
transportation costs, such as miles and hours, at point of drop off.

For transportation providers that don’t provide mobile devices for their drivers, this module can also be used on a desktop computer for receiving assignments and submitting trip logs for compensation.

API facade service

To facilitate integration of third party systems, and provide some tools for participants to customize their own use of the system, most of the service endpoints that power the user interfaces will be available for use.

Since this same API service will be used by the front-end interfaces, all operations available via the user interface will be accessible by machine service accounts for integration purposes.
Prototypes and Demonstration Scripts

Wireframes and scripts were sent to the stakeholders for feedback in early January 2018. Each of the demonstration scripts shows an aspect of the proposed system functionality. The instructions below are written for a stakeholder self-guided tour, and were also used during the second (February 2018) design sprint.

Mobility management office suite

Wireframe Prototype URL https://xd.adobe.com/view/28356cc7-d21e-432d-afa3-34b6b39514d4/

Logging a phone call and creating a ride request

1. Click Login
2. Click the circular 'floating action button' with the plus sign in the lower right-hand corner
3. Click the Phone icon to log a phone call or email
4. Click the magnifying glass next to the Client field to display the Client chooser dialog
5. Click Tom Jones (this would normally be filtered by typing into the text field)
 a. Note that you would normally select Ride Request from the call type menu
6. Click Save to save the contact log.
7. You are taken to the new Ride Request form, since this was a Ride Request call.
 a. Note that it copies the Pickup address from the Client's home address data. This is copied, and may be modified for this ride.
8. Click the Destination field to simulate typing in a destination address
 a. Note that it now shows the entire trip on the map, along with an estimate of the time and distance (via Google)
9. Click Save, and it takes you back to the Contact Log record that it was created from, and filled in a reference to the Ride Request in Ride ID. You can click on any of the blue underlined values, and it will take you to the details for that object, whether it's a client, ride, or provider.
10. Click Save or Done to go back to the list of Contact Log records.

Sharing Data

1. Click Login if you haven't
2. Click Clients in the navigation bar on the left
3. Click on the list of Clients
4. Click the circular 'sharing' icon in the upper right-hand corner, below Save, to display the sharing dialog
5. Click the Can View Field to display the Permissions popup
6. Click in the Permissions popup
7. Click Save in the dialog
8. Click Save in the upper right on the Client record to go back to the Client list

Setting permissions and data masking

1. Click Login
2. Click Settings
3. Click Permissions
 a. Default system-wide permissions are on the left, while default data masking for restricted view is on the right
Creating a new order from a previous order

1. Click Login
2. Click Clients
3. Click a Client in the list
4. Click the Ride Requests tab
5. Click on a Ride
6. Click Duplicate

View provider details and edit service area

1. Click Login
2. Click Providers
3. Click on the centermost map outline to see the Provider associated with that area and edit the borders

Inspect Ride Requests on Map

1. Click Login
2. Click Ride Requests
3. Click on each Ride icon (small person on map) to view details for the ride, as well as the destination location.
4. Click Edit to go to editing screen

View other pickups and drops near a specific ride

1. Click Login
2. Click Ride Requests
3. Click the Table tab on the right
4. Click a Ride in the list
5. Click on each of the markers on the map, displaying other nearby Rides being picked up or dropped on the same day.

Transportation provider suite

Wireframe Prototype URL

https://xd.adobe.com/view/4727c1b5-1846-4e4d-a28a-e4ec1765bd34/

General UI Tour

1. You start already logged in
2. Click on one of the people icons on the map to view the order inspector
3. Click Edit on the inspector to bring up the editing dialog
4. Click Save to close the editing dialog
5. Click on one of the vehicles to view the list of orders assigned to the driver
6. Click Orders to view the order list
7. Click on an Order to bring up the Order inspector
8. Click on an Edit to bring up the editing dialog
9. Click the pencil icon in the title bar of the dialog to go to the full editing screen
10. Click on the Client name to bring up the client details screen
11. Click Done to go back to the Order details screen.
12. Click on the Driver name to go to the Driver details screen.
13. Click on Qualifications to see the driver’s list of qualifications
14. Click on Availability to see the driver’s availability.
15. Click Save to go to the Driver list screen
 a. Drivers can be searched by name, by availability on a specific date, and by one or more qualifications

Transportation provider driver module
Wireframe Prototype URLs

On Mobile

Mobile UI Tour
1. You start already logged in
2. Click Load to indicate that you have picked up the passenger
3. Click Drop to indicate that you have dropped off the passenger at the destination
4. Note that the order switches to the completed tab once you drop the passenger off.
5. You can click Reset to restart the order

On Desktop
https://xd.adobe.com/view/a199ad55-d924-4551-94a3-176fb4ab500f

Driver Desktop UI Tour
1. You start already logged in
2. Click Print to print a trip sheet that you can carry with you while you drive
3. Click Print or Close to close the print preview
4. Click Completed to edit the timestamps and mileage
Component Overview

The user interfaces for all three accessible applications are served from static webservers capable of routing certain requests to a pool of load-balanced API Facade servers, through which all other functionality is provided.

These API Servers are coupled with a service discovery mechanism to allow dynamic scaling and zero-downtime software updates.

Geolocation Services

Due to the cost and effort of maintaining a comprehensive geospatial data store of participating regions, this system will utilize a commercial geospatial service, such as Google Maps, Bing, or others. In order to avoid vendor lock in, a geolocation service will provide a vendor-neutral wrapper for a specific third-party service.

In addition, a map overlay server will provide map-based views of orders, provider regions, and provider vehicles, filtered based on each item’s ACL in regard to the user accessing the data. In other words, the same geographically based query will return different information depending upon the party running the query.
Datastore Services

Services that directly interact with a database shall be separate from services that perform workflow logic. For example, a service that handles assigning an order to a driver would retrieve the data from external REST servers, modify the data for the assignment, and submit it back to external REST servers.

This provides a foundation for horizontally scaling the system, allows additional services to be injected into the workflow, and provides flexibility in choice of database platforms.

Data shall be masked appropriately, based on the data owner’s permissions and the user accessing the data, before it leaves the REST endpoint server.

A facility to import batch data for various data elements shall also be provided to facilitate interoperation with third party systems.

Authz Services

An OAuth2 IdP will provide authentication and role-level authorization for the entire system. Most data objects in the system, such as Clients, Ride Requests and Providers, have an embedded ACL that describes the access allowed to that object.

This access will include a default access level, access based on role membership such as a specific provider, and access granted directly to specific users.

Each ACL will have the following structure

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>A UUID allowing other items to reference this object</td>
<td>6c84fb90-12c4-11e1-840d-7b25c5ee775a</td>
</tr>
<tr>
<td>Default</td>
<td>List of Entity Type/Entity ID/Permissions Value triplets</td>
<td>{ CanView }</td>
</tr>
<tr>
<td>Grant</td>
<td>List of Entity Type/Entity ID/Permissions Value triplets</td>
<td>{ MobilityOffice, 6c84fb90-12c4-11e1-840d-7b25c5ee775a, { CanEdit} }</td>
</tr>
<tr>
<td>Deny</td>
<td>List of Entity Type/Entity ID/Permissions Value triplets</td>
<td>{ Provider, b906c84f-12c4-840d-11e1-775a7b25c5ee, { CanView} }</td>
</tr>
</tbody>
</table>
Appendix A: Annotated Screenshot Excerpts

Additional screenshot details can be viewed in the Common Fleet Info PowerPoint presentation.

Mobility Office - Ride Request Details

- **Lifecycle states allow tracking and later analysis of all requests, including ones that weren’t serviced.**
- **Possibilities:** New, Assigned, Loaded, Completed, Cancelled, No Show

- **Funding Accounts are categories for expenditures that allow tracking multiple budgets.**

- **Address Entry is facilitated by typeahead geolocation service, such as Google Maps or Bing.**

- **Ride Requests have an audit log describing all events affecting the order.**

- **Repeat orders are handled similarly to common apps like Outlook or Google Calendar.**

Image Description:
- Screenshot of a ride request interface.
- Details include date, time, provider, destination, funding account, and various tracking and logistical fields.
- Maps and address entry fields with example text.
- Lifecycle state dropdown and funding account dropdowns shown.

Note:
This is a visual representation of an annotated screenshot excerpt as part of the Mobility Office - Ride Request Details section. The annotations highlight key features and functionalities relevant to system architecture and design, including lifecycle tracking, funding accounts, address entry, ride request audit logs, and repeat order handling.
Mobility Office - Provider Map

Provider service areas are mapped and can be used to locate providers geographically.
Mobility Office - Provider Details

- Enabling logins for a provider allows them to access the integrated vendor system.
- Provider activity can be viewed from the provider record.
- Ratings display average system-wide rating until it's set for this ADRC. After that, it shows the local rating.

INVOICES

<table>
<thead>
<tr>
<th>Contact Phone</th>
<th>Client</th>
<th>Pickup Address</th>
<th>Destination Address</th>
<th>Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>(608) 555-1212</td>
<td>Maggi Rattenberie</td>
<td>149 Service Pass</td>
<td>5 Melody Street</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Krisha Coburn</td>
<td>5768 Oakridge Drive</td>
<td>UW Hospitals & Clinics</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Basilio Loughrey</td>
<td>4 Dovetail Drive</td>
<td>28 Memorial Circle</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Sibyl Dupre</td>
<td>82721 7th Avenue</td>
<td>Davis Debr, Inc</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Bree Janssens</td>
<td>089 Schmedeman Court</td>
<td>17602 Stephen Circle</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Alfreda Ellery</td>
<td>7 Park Meadow Trail</td>
<td>UW Radiology Clinic</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Odilia Ducham</td>
<td>8599 Porter Avenue</td>
<td>792 South Terrace</td>
<td>MEDI</td>
</tr>
<tr>
<td>(608) 555-1212</td>
<td>Mordy Hadigate</td>
<td>13778 Lerdahl Circle</td>
<td>8 Sunfield Road</td>
<td>MEDI</td>
</tr>
</tbody>
</table>
Provider – Map

Fleet map shows currently active drivers as well as orders near their locations.

If the mobile app is in use, the orders disappear from the map as they are picked up.
Customizable driver qualification categories can be used to search for drivers.
Appendix B: Current and Future Workflow Diagrams